Formularz opisu przedmiotu (formularz sylabusa) na studiach wyższych, doktoranckich, podyplomowych i kursach dokształcających

A. Ogólny opis przedmiotu

Nazwa pola	Komentarz
Name of the subject (in Polish	Chemia organiczna
and English)	Organic chemistry
Unit offering the subject	Faculty of Chemistry
Unit for which the subject is offered	Faculty of Chemistry
Subject code	0600-S1-O-CORGa, 0600-S1-O-CORGb
ERASMUS code	13.3
Number of ECTS credits	14
Method of assessment	Lecture – written examination Tutorial – graded credit Laboratory – graded credit
Language of instruction	English
Designation whether a subject may be credited more than once	No
Allocation of the subject to subject groups	Obligatory
Total student workload	Contact hours with teacher: - participation in lectures - 75 hrs - participation in tutorial - 30 hrs - participation in laboratory - 105 hrs Self-study hours: - preparation for laboratory - 40 hrs - preparation for colloquia - 60 hrs - preparation for the exam – 45 hrs - consultation and work with an academic teacher - 5 hrs Altogether: 360 hrs/25 hrs = 14 ECTS
Learning outcomes - knowledge	Student <i>W1</i> : knows the basic laws and chemical nomenclature – K_W01 <i>W2</i> : possesses a basic knowledge of the functional groups of organic compounds and reaction mechanisms – K_W07 <i>W3</i> : is familiar with the role of experiment and computer simulation in chemical processes – K_W04
Learning outcomes - skills	Student <i>U1</i> : is capable of recognize the functional groups of organic compounds and carries out the experiments in organic chemistry – K_U07 <i>U2</i> : is able to use the chemical nomenclature and concepts of general chemistry - K_U01
Learning outcomes - social competencies	Student <i>K1</i> : analytical thinking: independently and effectively works with a large amount of information, recognizes relationships between phenomena, and draws conclusions using the rules of logic properly – <i>K_K01</i> <i>K2</i> : conscientiousness and accuracy: is focused on the best execution

	of task, takes care of the detail, is systematic – K_K03
	K3: striving for development: is focused on continually acquiring new
	knowledge, skills, and experience; understands the need for continuous
	improvement and raise the professional competence; identifies the
	limits of his own knowledge and understands the need for further
	education – K K05
	K4: perseverance and consistency: is able to work systematically and
	has a positive approach to the difficulties standing in the way of the
	has a positive approach to the unneutrices standing in the way of the
	volte on one mainteet K KOG
	work on any project – K_K06
Teaching methods	Lecture: conventional lecture with the use of multimedia presentation
	Laboratory : syntheses and analyzes of selected compounds,
	completed with preparation of elaborations
	chemistry applying elements of lecture and discussion
Prerequisites	Basic knowledge of general chemistry analytical chemistry and
Trerequisites	instrumental methods
Brief description of the subject	The subject includes content related to the chemistry of carbon
Zier desemption of the subject	compounds and aims to familiarize students with basic information on
	the types of organic compounds and their reactions and experimental
	techniques in this field
Complete description of the	Lecture:
subject	The essence organic chemistry. The importance of carbon compounds
	to humans. The genesis of coal. Allotropic variety of carbon.
	Fullerenes. Carbon nanotubes. Coal as fuel.
	Alkanes: Alkanes as a class of hydrocarbons. Laboratory
	Fischer Tropsch processes Oil Natural ass Defining of crude oil The
	octane and cetane numbers of fuels. Nomenclature of alkanes
	Conformations of alkanes Combustion of alkanes Free radical
	bromination and chlorination of alkanes.
	Cycloalkanes : Cycloalkanes nomenclature. Cyclopropane structure.
	The stability of cycloalkanes. Bayer tensions theory. Conformations of
	cycloalkanes. Stereochemistry of the substituted cyclohexane
	derivatives. Disintegration of carbon-carbon covalent bond.
	Carbocation and free radical.
	Alkenes: Structure of ethene. Alkenes nomenclature. Laboratory
	methods for the preparation of alkenes. Dehydration of alcohols as a
	method for the synthesis of alkenes. E1 and E2 elimination reactions.
	dibromidas Addition reactions to the old fine Machanism of
	electrophilic addition to alkenes Hydrogenation of alkenes Addition
	of metal hydroxide to form alkenes. Markovnikov's rule and the
	exceptions to this rule. Addition of sulfuric acid. Bromination reaction.
	Bromonium ion. Halohydrines. Addition of water to the olefins. The
	epoxidation of olefins and acidic hydrolysis. Dimerization of alkenes.
	Oxidative degradation of alkenes. Ozonolysis. The oxidation of alkenes
	using KMnO ₄ and OsO ₄ . Oxymercuration-demercuration of alkenes.
	Hydroboration-oxidation of alkenes. Isomerization of boroorganic
	compounds.
	Dienes: Types of dienes. Methods for the synthesis of dienes.
	Chemical properties of conjugated dienes. Resonance of conjugated dienes. 1.2 Addition and 1.4 addition of conjugated dienes. Allul
	uteres. 1,2-Addition and 1,4-addition of conjugated dienes. Ally cation and its construction. The Diels-Alder reaction Stareochemical
	aspects of the Diels-Alder reaction
	Alkynes: Nomenclature. Physical and chemical properties. Syn and
	anti addition of hydrogen to alkynes. The acidity of acetylene and
	terminal alkynes. Silver and copper acetylides. Synthesis of alkynes by

the elimination of the vicinal dibromides. Synthesis of alkynes from ketones. Addition of halogens to alkynes. Addition of hydrogen halides to alkynes. Addition of water to alkynes. Tautomerism. The oxidative disintegration of alkynes.
Nucleophilic substitution: SN1 and SN2 mechanisms. Influence of various factors on the reactions. Energy profiles and the transition state

structures for nucleophilic substitution. Competition between nucleophilic substitution reactions and elimination. **Isomerism**: Optical isomerism. Stereochemistry of organic

Isomerism: Optical isomerism. Stereochemistry of organic compounds. Specific rotation. Concepts: enantiomer, racemate, diastereomer, meso compound. Fischer projection. Substituents priority rules.

Aromatic compounds: Structure of benzene. Reactions of benzene and differences with other hydrocarbons. Stability of benzene. Aromaticity. The Hückel rule. Molecular orbital description of benzene. Annulenes. Aromatic ions. Polycyclic aromatic compounds. Heterocyclic aromatic compounds. The mechanism of aromatic electrophilic substitution. Aromatic bromination and chlorination. Nitration and sulfonation of aromatic rings. The Friedel-Crafts alkylation and acylation reactions. Reactivity of aromatic rings. Alkyl derivatives of benzene and their reactions. Halogenation of alkylbenzene side chains. Alkenyl benzene derivatives and their addition reactions. Benzyl radical and cation. Organometallic compounds. Organic compounds of lithium, magnesium, boron, zinc, mercury, and copper - synthesis, structure, properties, and applications. Alcohols, phenols, ethers, crown ethers. Aldehydes and ketones, enols and enolate ions, aldol reactions. Carboxylic acids, chlorides, and anhydrides. Esters, esterification, condensation ester, syn-elimination. Amides, sulfonamides, chemotherapy - historical. Amines, quaternary ammonium salts and hydroxides. Hofmann elimination, phase transfer catalysis, enamine. Dicarbonyl compounds, acetoacetic and malonic esters. Reactive intermediates - carbocation, carbanion, free radical, carbene, nitrene, benzyne.

Macromolecules: The main methods of synthesis of macromolecules. The polymerization and polycondensation. The most important class of polymers.

Natural compounds and biopolymers: Carbohydrates - classification, monosaccharides - chain and cyclic forms, mutarotation, reactions: building and reconstruction, disaccharides, polysaccharides. Amino acids - structure, acid-base, isoelectric point, and synthesis reactions. Polypeptides - structure determination. Synthesis of polypeptides.

Laboratory:

Techniques of laboratory work and determination of physical constants: crystallization, distillation (simple, fractional and steam distillation), extraction and sublimation. Thin layer chromatography (TLC), gas chromatography (GC) and infrared analysis (IR). Realization of 8 preparations in the field of the substitution reaction, Diels-Alder addition, elimination (dehydration), oxidation, reduction, electrophilic substitution on the aromatic ring, esterification and condensation. Complete three tasks in the field of qualitative analysis of organic compounds.

Tutorial:

These classes are dedicated to solving of simple problems with the basics of organic chemistry discussed in the lecture, nomenclature of organic compounds and the reaction mechanisms occurring in this class of compounds. Nucleophilic substitution and elimination reactions, addition to the double bond, electrophilic substitution on the aromatic ring and the aldol condensation will be discussed.

Literature	Basic literature:
	1. T. W. G. Solomons, C. B. Fryhle, Organic Chemistry, 7 th Ed., J.
	Wiley, New York, 2000.
	2. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry,
	Oxford University Press, Oxford, 2001.
	3. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell,
	Vogel's Textbook of Practical Organic Chemistry, 5 th Edition,
	LongmanScientific&Technical, Essex 1989.
	4. R. L. Shriner, Ch. K.F. Hermann, T. C. Morrill, D. Y. Curtis, R. C.
	Fuson, The Systematic Identification of Organic Compounds, 7 th
	Edition, J. Wiley, New York, 1998.
	Additional literature:
	1. J. McMurry, Chemia organiczna, PWN, Warszawa, 2000.
	2. R. T. Morrison, R. N. Boyd, Chemia organiczna, PWN, Warszawa,
	1990.
	3. P. Tomasik, Mechanizmy reakcji organicznych, PWN, Warszawa 1998.
	4. Laboratorium chemii organicznej, praca zbiorowa pod redakcją
	Piotra Kowalskiego, WNT, Warszawa, 2004.
Assessment methods &	Assessment methods:
criteria	Lecture: written examination – the final assessment is the sum of
	points scored in the exam (75%), laboratory (15%) and tutorial (10%) -
	W2, W3, U1, U2, K1, K2, K3, K4.
	Laboratory: credit on the basis of laboratory exercises and
	eraborations. Nine written tests per semester - w1, w2, w3, 01, 02, continuous evaluation of the student in the laboratory $-$ K1 K2 K3
	K4
	Tutorial : credit on the basis of two written tests per semester - W2
	W3. U1. U2. continuous evaluation of the student in the classroom -
	K1, K2, K3, K4.
	Assessment criteria:
	fail - 50% <
	satisfactory - 50-60%
	satisfactory plus - 61-65%
	good - 66-75%
	good plus - 76-80%
XXX 1 1	very good - 81% >
Work placement	Not applicable

B C)pis	przedmiotu	cyklu
-----	------	------------	-------

Nazwa pola	Komentarz
Didactic cycle	IV and V semester
Method of assessment of the	Lecture - written examination
subject in the cycle	
Type of classes, number of hours	Lecture - 75 hrs, examination
of classes and methods of	Laboratory – 105 hrs, credit with a grade
assessment	Tutorial – 30 hrs, credit with a grade
Subject coordinator	dr Agnieszka Tafelska-Kaczmarek
Subject teachers	Dr Agnieszka Tafelska-Kaczmarek – lecture
	Dr Marek Krzemiński – laboratory
	Dr Agnieszka Tafelska-Kaczmarek – tutorial
Nature of the subject	Obligatory subject
Limit of places available in each	Lecture: one group includes all students of the course
group	Laboratory: groups may have up to 30 students
	Tutorial: groups may have up to 24 students

Time and place	Lecture: lecture room, the dates according to schedule
	Laboratory: Organic Chemistry Laboratory, the dates according
	to schedule
	Tutorial: seminar room, the dates according to schedule
Learning outcomes	As in part A
Assessment methods & criteria	As in part A
List of topics	Lecture:
	1. The nature of organic compounds
	2. Alkanes and cycloalkanes
	3. Stereochemistry of alkanes and cycloalkanes
	4. Alkenes: structure, reactivity, and synthesis
	5. Alkynes: structure, reactivity, and synthesis
	6. Nucleophilic substitutions and eliminations
	7. Benzene and aromaticity 8. Chemistry of banzana: alastrophilis aromatic substitution
	a. Chemistry of benzene. electrophine aromatic substitution
	10. Ethers and epoxides
	11 Aldehydes and ketones: nucleophilic addition reactions
	12. Carboxylic acids
	13. Carboxylic acid derivatives
	14. Carbonyl alpha-substitution reactions
	15. Carbonyl condensation reactions
	16. Carbohydrates: classification and reactions
	17. Aliphatic amines
	18. Arylamines and phenols
	19. Amino acids, peptides, and proteins
	20. Lipids
	21. Heterocycles and nucleic acids
	Laboratory:
	1. Simple distillation, fractional, and under reduced pressure,
	refractometry, polarimetry
	2. Crystallization, melting point determination
	3. Extraction and sublimation
	4. TLC, GC chromatography
	5. Tert-butyl chloride: tert-amyl chloride
	6 Adipic acid: anthracenesuccinic anhydride
	7 Isoamyl acetate: isobutyl acetate
	8. Cyclobevene: the dehydration of 2-methyl-2-butanol
	0. 7.7 Dichleronerearenet, actium, herohydride, reduction, of
	comphor
	10.1 Nitrononhthalana, tart hutultaluana
	10.1-Mitoliaphinalene, tert-butyitoluene
	12.3,5-Diphenyl-4,5-dinydroisoxazole, 4,5-diphenyl-2,2-
	dimethyl[1,3]dioxolane
	13-15. Qualitative analysis of organic compounds
	Tutorial:
	Nomenclature of organic compounds
	Constitutional isomerism and stereoisomerism
	Enantiomers, diastereomers, Cahn-Ingold-Prelog rule
	Indice philic substitution reactions $S_N I$ and $S_N 2$
	Emmation reactions E1 and E2 Free radical halogenation of alkanas
	Addition reactions to a double bond
	Electrophilic substitution on the aromatic ring: chloringtion
	bromination, nitration, sulfonation. Friedel-Crafts reactions
	The aldol condensation, Claisen condensation, syntheses from

	acetoacetic and malonic esters Reactions of acids and their derivatives Reactions of amines Structures of sugars and their reactions
Teaching methods	As in part A
Literature	As in part A