Formularz opisu przedmiotu (formularz sylabusa)

A. Ogólny opis przedmiotu

Nazwa pola	Komentarz
Name of the subject (in Polish	Chemia stosowana i materiałów
and English)	Applied and materials chemistry
Unit offering the subject	Faculty of Chemistry
Unit for which the subject is offered	Faculty of Chemistry
Subject code	
ERASMUS code	
Number of ECTS credits	2
Method of assessment	Examination
Language of instruction	English
Designation whether a subject may be credited more than once	No
Allocation of the subject to subject groups	obligatory
Total student workload	Contact hours with teacher:
	- participation in lectures - 30 hrs
	Self-study hours:
	- preparation for lectures - 2 hrs
	- preparation for test/ examination- 18 hrs
	Altogether: 50 hrs (2 ECTS)
Learning outcomes - knowledge	W1: Knows the basics of general chemistry (understands concepts
	and laws), chemical terminology and nomenclature – K_W01,
	W2: Knows the structure of matter – K_W01,
	W3: Knows the structure and properties of metals and non-metals,
	and of simple chemical compounds – K_W01,
	W4: Knows different sources of energy and raw materials for
	energy production – K_W01.
Learning outcomes - skills	U1: Can describe chemical laws – K_U01,
	U2: Can associate the structure of a material with its properties -
	K_U01.
Learning outcomes - social	K1: Can work independently and effectively with a large amount of
competencies	information – K_K01,
	K2: Thinks creatively about improving existing or developing new
	approaches – K_K02,
	K3: Is geared towards the constant acquisition of new knowledge,
	skills and experience; sees the need for continuous improvement
	and enhancing professional expertise; is aware of the limitations of
	his/her own knowledge and understands the need for ongoing

	education – K_K05,
	K4: Is capable of independently seeking information in the subject literature and scientific databases – K_K07.
Teaching matheda	_
Teaching methods	- Lecture with multimedia presentations
Prerequisites	Required knowledge of chemistry on completion of secondary
	education
Brief description of the subject	The aim of the subject is to acquaint students with the problems of
	producing and applying chemical materials and substances, the
	principles of their rational utilisation and management.
	• Fundamental problems associated with the structure of
	solids, transitional phases and allotropy.
	• Band theory of solids – conducting and semiconducting
	properties of materials.
	• Metals, alloys, metal oxides.
	• Ceramics, glasses, building materials.
	• Natural and synthetic polymers – structure, properties,
	manufacture, application and recycling methods.
	• Energy production – types of fuels and techniques of their
	combustion; renewable sources of raw materials and
	energy.
	• The problem of post-consumer communal and hazardous
	wastes. Technologies for the management (recycling) of
	wastes.
Complete description of the	1. "Green chemistry": principles and means of implementation;
subject	environmentally friendly technologies.
	2. Wastes - the scale of the problem, division, classification,
	properties and waste management principles. Waste processing
	technologies. Recycling and energy recovery.
	3. Conventional and renewable energy production. Primary and
	final energy. Raw materials: solid, liquid and gaseous fuels.
	Combustion processes and exhaust gas purification. Prospects and
	directions of development for energy production (nuclear energy,
	biofuels, fuel cells). Hydrogen as a source of energy.
	4. The structure of matter: chemical bonds and intermolecular
	interactions. Real gases, condensation (phase transitions). Properties
	of liquids due to intermolecular interactions: surface tension,
	viscosity, solubility.
	5. Solids – phase transitions, types of phase, properties. Crystals –
	definitions, spatial and crystal lattices. Miller indices, unit cells and
	systems for classifying crystals. Aspects of symmetry and

	parameters characterising the spatial lattice of crystals.
	6. Mechanical properties of solids: hardness, elasticity, elongation.
	Hardness scales. Allotropy and anisomerism. Disruptions and
	defects in the crystal lattice.
	7. Metals – types of crystal structure, band theory of conductivity.
	8. Band model of solids – division into conductors, semiconductors
	and insulators. The chemical "systematics" of semiconductors.
	Intrinsic and doped semiconductors. Application of semiconductors.
	Superconductors, liquid crystals, glasses.
	9. Magnetic properties of solids: diamagnetism, paramagnetism and
	ferromagnetism.
	10. Physico-chemical and technological properties of metals.
	Metallurgy of iron and other metals (ferrous and non-ferrous).
	Steels and alloys – properties and applications.
	11. Colloids and nanomaterials.
	12. Chemistry of building materials – cements and ceramics.
	13. Natural and synthetic polymers. Thermoplastic polymers and
	elastomers. Thermosetting polymers.
	14. Surface phenomena: adhesion, adsorption, heterogeneous
	catalysis, electrode processes.
	15. Corrosion of materials (electrochemical, atmospheric). Prevention of corrosion.
X	
Literature	1. Shriver and Atkins; Inorganic Chemistry (Fifth Edition).
	2. Lesley E. Smart, Elaine A. Moore; Solid State Chemistry: An
	Introduction, (Fourth Edition) 2012 by CRC Press.
	3. B. Fahlman; Materials Chemistry. 2007 by Springer Verlag
	4. Geoffrey Ozin and André Arsenault; Nanochemistry: A Chemical
	Approach to Nanomaterials; RSC Publishing (2005)
	5. R.J.D. Tilley, Understanding Solids: The Science of Materials;
	John Wiley & Sons (2004)
Assessment methods & criteria	Assessment methods:
	- written examination- K-W01, K-U01 – 90%
	- activity – K-K01, K-K02, K-K05, K-K07 – 10%
	fail- below 50%
	satisfactory- 51-59%)
	satisfactory plus- 60-67%
	good - 68-74%
	good plus- 75-81%
	very good- 82-100%
Work placement	not applicable

B) Opis przedmiotu cyklu

Nazwa pola	Komentarz
Didactic cycle	2014/2015
Method of assessment of the subject in the cycle	written examination
Type of classes, number of hours of classes and methods of assessment	lecture- 30 hrs; examination
Subject coordinator	Dr hab. Stanisław Biniak, prof.UMK
Subject teachers	Dr hab. Stanisław Biniak, prof.UMK
Nature of the subject	obligatory
Limit of places available in each group	1 group - no limit
Time and place	Faculty of Chemistry- date will be specified later
Learning outcomes	As in part A
Assessment methods & criteria	As in part A
List of topics	As in part A
Teaching methods	As in part A
Literature	As in part A