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1. Crystallography — science of ordered solids.

Crystallography is an inter-disciplinary scienceigmated from mineralogy. Considering
the description of matter, phenomena coupled viiéhresearch, the nature of objects and problems
being solved, crystallography is an interdisciplingcience located between physics (research
methods), mathematics (formal description), chemisind biology (relations between the 3D
structure and properties or function of moleculed biomolecules).

Foundation of modern crystallography was laid inIXadéntury. One of the important bases
is the law of constancy of angles formulated byd\is Steno, which states that angles between
faces in the crystals of a given substance obtaimelér the same physico-chemical conditions (eg.
pH, temperature, solvent) are constant. The ratibasis for this law was proposed by mineralogist
Rene Haly, who hypothesized that crystals are bpilvith identical fragments repeated in space.
Consider the growth of the crystal containing ideaitmolecules. Due to the chemical assembly,
each molecule has the preferred directions of aectesns with the surrounding molecules. Energy
of these interactions depends on the participdtangments (functional groups). If we let the syste
reach the thermodynamic equilibrium, we may exp#et each molecule forms analogous
interactions with the surrounding matter, and thstatices between molecules in equivalent
directions will be identicalKig. 1.1). Three directions, corresponding to the higrestrgy of
intermolecular interactions, might be chosen incepas the axes of the coordinate system, that will
be used for a crystal description. If the surrangsl of each molecule is identical, the whole @alyst
has a periodic structure. Unit translations alding axes (axis unit vectors) correspond to the
distances between adjacent molecules. Choiceeo$ybtem axes might be done based on analysis
of the crystal morphology — directions correspogdia the highest energy of the inter-molecular
interactions will appear in the crystal morpholag/the longest edgeBig. 1.2 and correspond to
the highest linear density of matter. The lardases correspond to the planes with the highest
planar density, what also results from the thermadyic optimum of interactions. If molecules
reveal the symmetry of their spatial architectdane, network of their interactions might also reveal
such symmetry, and would be reflected in the symyradtthe crystal.
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Based on that, arystal can be defined as a chemically homogeneous salithty the ordered
internal structure (periodicity, symmetry of the ttea distribution), in which the scalar properties
are identical in all directions, while the vectapperties are identical in directions parallel axle
other or those related by symmetry.

Description of the crystal can be done by detertionaof coordinates of all atoms in the
crystal. That corresponds to tbeystal lattice. However, the description can be simplified, by
substitution of molecules (eg. proteins, viruseglatular associates) by points called nodes or
lattice points. Such a description is much simpler, and stilc8y reflects the geometrical relations
between the lattice components, such as distandée dattice symmetry. This description refers to
thelattice.

Axes of the coordinate system are selected as timeeoplanar lines defining the right-handed
trihedral. Description of coordinates axes andrtheit translations are shown d¢fg. 1.3 Base
vectorsof X, Y and Z axes are called, d and @, respectively. If one of the identical latticeinqis
will be chosen as the system origin, the base ve@nd their sum will define eight lattice points
(molecule representations) in the corners of thallgdepiped. This parallelepiped is called thmat
cell and corresponds to the basic unit of the cryptadfulated by Rene Hatly. Shape of the unit cell
depends on the vectors between the lattice poifitee lengths of these vectors correspond to the
lengths of the unit cell edges, while the anglesespond to the angles between the coordinate
system axes. The lengths of the base vectorsragldsabetween system axes, @, &, a, B, y) are
called theunit cell parameters ( cell constants) The choice of the unit cell in the periodic izt
can be made in different waysig. 1.4). Such choice has to satisfy several conditions:

- Contents of the unit cell is representative formle crystal
- Choice must correspond to the minimal volume ofdélé maximal number of the right angles
between axes and maximal symmetry
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Fig. 1.3. Fig. 1.4
Based on the parameters of the unit cell, alltatgdelong to one out ofcfystal systems

Triclinic atb#c o#B#y L1
Monoclinic atb#£c o=y=90< L2
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Orthorhombic atb#c 0=p=y=90 3L2
Tetragonal a=bfc a=p=y=90 L4
Trigonal a=b=c a=p=y#90 (rhombohedral) L3
a=tr a=B=90y=120 (hexagonal)
Hexagonal a=btc a=p=90y=120 L6
Cubic a=b=c a=pf=y=90 4.3

The above table also contains an information onsymametry axes (described in the further
lectures) characteristic for the given system.

Description of the whole crystal is therefore sitfigdl to the description of a single unit cell and
three base vectors,dy, ¢, the linear combination of which defines the positof other cells in the
crystal lattice. That results in the necessityusing the analytical geometry or introducing the
notations used by crystallography. Position of ploet (e.g. the equilibrium position of atom) is
defined by three fractional coordinates x y z. Séheoordinates are calculated as fractions of the
base vectors along X Y Z axes. Therefore, positibthe point can be described with the vector
staring at the origin:

r=xa+yb +zc

The consequence of the above equation is thaticwtes for all points belonging to the unit
cell belong the range [0,1]. Coordinates of thieda points are integers.
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Fig. 1.5. Fig. 1.6

Lattice rows (lines) and planes in the lattice d@eéned as sets of pointsi¢s. 1.5 and 1.k

In space, direction of the line can be definedwg points x y1 z; and % Yy, z, belonging to that
line. Indices in the symbol of that lattice rowvfyj can be calculated as the differences of
coordinates for the pair of point&X Ay Az]. For example, pair of points 112 and 223 defitiee
lattice row [111]. Consequently, the lines X Y addunning through the system origin and the
points at the end of each base vectprba ¢ have symbols X [100] Y [010] and Z [001]. Since
indices uvw are also integers, the numbers regultom the subtraction should be multiplied by the
appropriate factorHig. 1.6. All parallel lattice rows in the lattice hava mlentical symbol [uvw],
what is consistent with the crystal definition.
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The planes in 3D space can be defined by coordirwdtthree points. To introduce the plane
symbols, one should consider a pair of planesdatging the coordinate axes at the lattice points
point HK L and H K; and Ly (Fig. 1.7). Positions of points correspond to the integattipies of
unit vectors g by, . That leads to the law of rational indices: gewots of the axis sections cut by
two planes are rational numbers OH/{OBK/OK; OL/OL; O W.

Fig. 1.7.

Based on that, English crystallographer Miller kdaéined the plane notation. Assuming that
OH, OK. and OL sectors correspond to the unit tedizhs OH=g, OK.=hy, OL=q, the plane
intersecting the axes at H, K and L might be tHeresce plane, and the orientation of other planes
can be described relative to this plane. Conwgttive rational numbers into integers we obtain the
Miller indices (hkl) for the H K1 L1 plane:

h=a/OH; k=h/OK; I=a/OL; whereh, k,0C

From the crystal definition, the parallel planes aguivalent to each other since they intersect
the system axes in subsequent lattice points. rprggtion of Miller indices is shown in the
following example. The unit plane intersects tixesaat the ends of the unit vectors (H, K, L),
defining the sectors OH=a; OK=b; OL=c. Therefama the Miller notation for (hkl), the quotient:

h:k:l=a/OH : b/OKq: c/Olg
OH1=a/h OK =b/k Ol =cll

Therefore, the interpretation is as follows: nunsbbr k and | indicate how many identical
sections of @by and ¢ are defined by successive parallel grid planesrsecting the axes in the
subsequent lattice points. For (421) plane, thgtles of the sections on the coordinate axes are

OH1 =4a/4; 0K =b/2; 0l =cC

Consider the indices of planes parallel to thetatysystem axes. Such planes cut off the infinite
sectors on the axis. Based on the Miller definitithhe index calculated for X axis is limeg¢a) = O.
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Four planes (faces) in space describe in a compleig the unit cell and unequivocally
determine the crystal systerfig. 1.8. Three of them are defined by the pair of couate axes
XY, XZ and YZ, while the fourth one intersects #le axes in points defining the unit vector
lengths. That set of planes is called a basicatletiron. Three faces of that tetrahedron
corresponding to the unit cell faces have symbd@0) (010) and (001), while the fourth one,
defining the unit vectors has a symbol (111).

A face parallel to X and Y axes and intersectingx@s at the end ofochas a symbol (001).
Symbols of faces parallel to X,Z and Y,Z are (0a0¢l (100), respectively.
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2. Basic crystallography. Zone calculations. Bra translational groups.

One of the important terms in crystallography mae— a set of planes parallel to the common
line, called thezone axis The zone equation can be derived based on thlgtial geometry.
Consider the plane in the 3D space as a set gpaiyis satisfying the sector equation:

5+X+E =1 where a,b,c - sectors cut off on X, Y and Z axes
a

b c
Translation of this plane changing the sectorshieyfactor d: ad, bd and cd gives:

X z
_+l+_:1 or

ad bd cd

For a plane running through the system origin dAy plane of the Miller symbol (hkl) cuts
off the sectors a/h, b/k, c/l giving the equation:

X z
+Y

= or
a/h b/k c/l
m+ﬁ+l_zzl
a b c

Introduce the zone equation. The equation of (bldhe running through the system origin:

B+Q+|_Z:O
a b c

If (hkl) plane belongs to the [uvw] zone, one cae translations to find a line [uvw] lying in the
plane (hkl). Both contain the system origin. Boch a line the following proportion is true x : g
= u:v:w. Points 000, uvw; au bv cw belongtih plane and the line. Substitution gives:

hue kvt Iwc
+ +
a b C

=0 or

hx +ky +1z=0

The above equation is called thene equation If it is correct, the (hkl) plane and [uvw] line
are parallel, therefore the plane belongs to th@Jwone. Other meaning is that the [uvw] line is
the zone axis for the (hkl) plane. If incorret¢tmeans that [uvw] and (hkl) are not parallel. d_et
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analyze the example. Is the line [201] a zone fxi$¢010) plane? Calculation 2x0 + 0x1 + 1x0 =0
confirms that thesis.

Based on the appropriate zone equation, one catulatd the general symbol of planes
belonging to the zone of the X axis. Since thelsylof X axis is [100], the equation gives:

1x0 + Oxk + Oxl = 0= symbol (Okl).

Similarly, the general symbol of the plane beloggio the Y [010] zone is (hOl), and the
general symbol of the plane belonging to the Z [Ofifne is (hk0). Consequently, the coordinate
system axes might be defined not only by the fadeke basic tetrahedron, but also by any pair of
planes belonging to the zone of the given axis.

The spatial geometry indicates that intersectionwaf planes unequivocally defines the line,
and two lines define the plane in space. Usingctlystallography terms, that conclusions can be
reduced to the system of two zone equations. ib&tsduce thezone law The zone is a set of all
planes parallel to the zone axis. Consider twogdah k; 1) and (1 k; |;) defining the zone axis
and running through the origin 000:

hx  ky 1z _

—+—=+==0 / Ik

a b c "2 2
_hzx+_k2y +'%Z:o by Ik

After multiplying the first equation by,fand the second by @hand adding them:

(kihp —kohyy , (Iho—lThjz _ g
b C

Similarly, multiplication of the first by kand the second by (gkand summation gives:

(hk; = hyky)x + (=lik, +1.k)z _ 0
a o
After conversion of both, we get:

(Ithp —12hyz — (hka-hXjy (hk, = hok)x — (Iky —15k))z
C b a C

Further conversion allows to calculate the comm@ression depending on z/c:

y Z X X _y _2

b(hp ~ M) c(hke— b K)  alkh—keh)  au by ow

Projekt wspétfinansowany przez Writuropejsk w ramach Europejskiego Funduszu Spotecznego



UNIA EUROPEJSKA

E KAPITAL LUDZKI FUNDUSZ SPOCECINY

NARODOWA STRATEGIA SPOINOSCI

Projekt pn. Wzmocnienie potencjatu dydaktycznéfddK w Toruniu w dziedzinach matematyczno-przyrodniézyc
realizowany w ramach Poddziatania 4.1.1 Programer@yjnego Kapitat Ludzki

In such a way we get the values u, v and w — tde@s in the symbol of the zone axis defined
by two planes. The quotient u:v:w can be writtentlae quotient of three determinants, and the
formula below allow to memorize that.

kg
b ko

My
h

ki 1p by kg

kylo o ko
u v w

|1
o

l1 hy
I, hy

kg I
ky o

uv. w= . . or

Symbol of the plane belonging to zonesvjwi] and [wvow,] can be obtained in a similar way.

Lets go back to the node distribution in the spatiice. In the periodic lattice, molecules are
positioned not only around the cell corners, bsbahround centers of the cell faces or the cell
center. Figures-ig. 2.1 and Fig. 2.2 present the Pd complex molecule and the correspgnd
packing of the crystal lattice. It can be noti¢kdt the pair of the complex molecules is posittbne
at the cell center and defines the node identacidse at the cell corners.

Fig. 2.2

Based on the real distribution of matter in thestalunit cells, four basic types of the cells are
defined: the primitive cell P, base-centered celbGdy-centered | and face-centeredFg( 2.3.
For these cell types the node position is defired &near combination of the unit translationg (a
bo, ) in the P cell, with additional translations: (/2band (a+b)/2 + c in C, (a+b+c)/2 for the | cell
and (a+b)/2; (a+b)/2 + c; (a+c)/2; (a+c)/2 + b;p2; (b+c)/2 + a in the F type cell. Only suchdao
distribution is found in nature. Formed in suchay, 14 types of the translational lattices satibfy
definition of the translation group in space.

Pmmm Cmmm

10
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The translation group is a set of group elementsanslations and the group rule — the
translation vector summation, defined in the 3Dcspa

Set of translations and their summattooconstitute the group G closed under ¢heperation, if
the following axioms are satisfied:

1. For each a,b/d G the associative condition
(e*b)ec = a(beC)

2. ldentity element. For eachiBG, the identity element@ G exists such that
aee=-ea=-a

3. Invertibility. For each & G, the inverse element@ G exists such that
@ d=dea=e

4. Closure. For each abG closure exists
ab=ba

The node distribution in cells affects the numkfemades (molecules) contained in the cell.

The primitive cell P has nodes only in the cellnss, so their coordinates are: 000, 100, 010,
001, 110, 101, 011, 111.

Three types of the base-centered cells are defiffdd A cell has two nodes at the centers of
two faces intersecting the X axis. Therefore tbhdencoordinates are as in P type cell and addltiona
pair 0%% and 1%%. In the B type cell, the fagits additional nodes are those intersecting the Y
axis, and their coordinates are as in the P caBl pt0% and %21%. In the C cell, the additional
nodes center the faces intersecting Z axis, so ¢berdinates are as for P cell plus %220 and %“2Y%:1.

In the F type cell, all faces are centered, ss #@ iogical sum of A, B and C cells. The node
coordinates are as in the P type plus 0%, 1¥2Y2, %1%, ¥2%20 and ¥2Y21.

The I type cell has the nodes in corners and atehéer ¥2%2%%.

In crystallography, number of nodes (moleculeghmunit cell is denoted Z. Number of nodes
in the primitive cell P related by the translatgnoup Z=81/8=1

Number of nodes inthe A, Bor Ccells: Z€lf8 + 2% =2

For the | cell, number of nodes: Z =138 +1 =2

Number of nodes in the F cells: Z =188 + 3(2:%2) =4

French mathematician Auguste Bravais has derivetydes of the translation lattices in the 3D
space, taking into account 7 crystal systems amygpds of the cell centering. These translation
lattices are listed below. Some lattices are miggsiue to two reasons. The first one is that it is
possible to convert the hypothetical lattice irfte bther one, and maintain the cell parameters for
the considered crystal system. The other reasdmeigking the symmetry characteristic for the
considered crystal system or breaking the requinésrfer existence of the translation group.

11
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Possible Bravais translation groups

Triclinic P

Monoclinic P,C
Orthorhombic P, AB,C), F, I
Tetragonal P, 1

Trigonal P,R
Hexagonal P

Cubic P, F,I

In the trigonal system, symbol R is used for thenfiive cell with the rhombohedral coordinate
axes a=b=cg=p=y#90, while symbol P denotes for the hexagonal axwoe a=kc, 0=p=90y=120
(identical to the hexagonal system).

12
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3. Symmetry. Elements of the point groups.

Lets begin with the statistics. Considering thé aell parameters (a, b, a, B, y) all crystals
can be classified into 7 crystal systems. The ouddedistribution in the unit cell allows to defide
types of the Bravais cells P, A(B,C), F and I. $dolg translation cells in different crystal systeem
lead to 14 Bravais translation lattices. The diedaanalysis of the matter distribution in the #ire

dimensional space results in 32 groups of symme#tijed thepoint groups. This lecture is focuses
on the symmetries and their description.

The crystal morphology reveals that some crystaégahave identical shape and dimensions.
Also some crystal edges have the same length. ngawviset of identical faces or edges one can
define the transformations relating these morphpkigments to each other, and these are symmetry
operations. Some examples of the symmetry axesalesd by morphology are shown Big. 3.1.

2-fold

f
i
|
|

/
pt+\-P
T |
| |
! [ |
T
\ 7
Pl
|
|
|
|
Aragonite Calcite Apatite
CaCO0; CaCO;4 Cag(CLF) (PO,),
Fig. 3.1

Associating crystal faces and edges with the distion of molecules or nodes in the crystal
(Fig. 1.1 Fig 1.2 allows to conclude that the matter distributiarthe crystal lattice has a symmetry
revealed by the crystal morphology. Similar tonslations, the symmetry operations are the

isometric transformations — they preserve the dega. Description of symmety can be done
with the matrix operators.

sl1 s12 <13

S |s21 s22 s23 transforming poinX into its symmetry equivalet®’
s31 s32 s33

The form of the matrix is easy to derive. Consittex product of matriS and the column
matrix describing the ends of the unit vectaydg . For example:

13
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sll1 sl2 s13)(1 sll
s21 s22 s23||0| =|s21 and similar for points 010 and 001
s31 s32 s33)(0 s31

One should consider the symmetries relative tgothiet, line and plane. Each symmetry has a
corresponding symmetry element — a set of poirds dhe invariant for the given symmetry. The
point reflection is called the inversion. We imduze the Groth symbolism. The Groth symbol of
this symmetry isC. The point equivalent t¥ is X’ positioned on the common line wikhand the
center of symmetry, opposite ¥oand equally distant from the cent&ig. 3.2. Therefore, the set
of the invariant points has only one element —démeter of symmetry. This symmetry involves 2
symmetry-equivalent points.

5
° oV
xXyz xyz
.
Fig. 3.2. Fig 3.3 Fig. 3.4

If we assume that the system origin coincides Withcenter of symmetry, the inversion can be
described with the equation:

-1 0 O X - X
O -1 O||y|=|-Y
0O 0 -1)\z -z

The line symmetry is the rotational symmethig( 3.3 which corresponds to the rotation
around the two-fold axis by 180and the Groth symbol is,L The two-fold symmetry involves 2
symmetry-equivalent points. The set of the invari@oints corresponds to the rotation axis. Since
this axis is a directional element, its orientati®mlescribed with the line symbol [uvw]. The npatr
operators for basic two-fold axes are given below:

1.0 0 -1 0 0 -1 0 0
L,[100] |0 -1 © L[010] | 0 1 O L001] | 0 -1 O
0 0 -1 0 0 -1 0 0 1
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The plane symmetry is shown &ing. 3.4 The Groth symbol is P. Since the mirror plage i
also a directional element, its orientation is elembwith the Miller symbol (hkl). This symmetry
involves 2 symmetry-equivalent points. Descriptadnthis symmetry with the matrix operators is
given below:

-1 0 0 1 0 0 100
P(100)| 0 1 O P(010)|{0 -1 O P(001)[0 1 ©
0 01 0 0 1 00 -1

In addition, the identity occurs, for which the @reymbol isE, and the operator is as follows:

m
o O
O +—» O
— O O

Consider the rotation around the n-fold axis petath Z by the angld = 3? Position of

point X,y can be described with the vector of #egth is r and the angtebetween the vector and
the X axis. The rotation transforms the point ¥ty its image x’, y’ Fig. 3.5

\ 4

_______________

Fig. 3.5

Coordinates x,y can be expressed as a functionaoidrthe angle.. The coordinates of the
image can be expressed in a similar way. Simplestormation can relate their coordinates:

X =r coX y =1 siol
X' =r cos@+3) = r cot cof3 - r sinx sin3
y' =rsin@+f) = r sirt cof3 + r cot sinf3

X' =x cof3 -y si3
y' = x sin3 + y cof

15
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Therefore, the transformation of X,y point into yk’,can be described with the matrix
corresponding to the n-fold axis (rotation aroun@¥amples for the 2-fold and 4-fold axes):

Lo Lg
cosf —-sing 0 -1 0 O 0 -1 0
Lnllz sing cosf O 0O -1 0 1 0 O
0 0 0O O 0 O

For the axes parallel to Y and X the matrices lasKollows:

cosf 0 -sinB -1 0 O 0 0 -1
Lnlly 0 1 0 0 1 O 1 0
sing 0 coB 0O 0 - 1 0 O
1 0 0 1 0 O 1 0 O
Lnllx 0 cosf -sinB 0 -1 O 0 0 -1
0 sing cosB 0O 0 - 01 O

Consider the rotation by any anglebut take into account the periodicity of the tay4attice.
This leads to the answer for a question of whas afesymmetry can describe the matter distribution
in crystals

Consider 4 nodes NN, (Fig. 3.6. The n-fold axes with the rotation angle= 360/1f (Groth
symbol L) run through nodesNand N,. Let N; and N, be the adjacent nodes on the grid line, with
the Ni-N4 distance of a. Since nodeg &hd N result from the rotation of Nand N, the N-N; and
N4-N3 distances also equal to a. Due to the perioddfitthe crystal lattice, the distance-Nz is a
integer multiple of a.

d
Fig. 3.6

From periodicity of the crystal lattice, d = ma[ihC

16
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d =ma = a + 2acaf) l:a

m - 1 = 2cosf’)

¢ =180 -¢' = cos’) = - cosfh) Therefore:
1-m = 2cosf)

(2-m)/2 = cos)

Values of cogf) belong to range [-1,1]. Therefore for the sgosmt integers m:

m cosf) ¢ n = 36060 Ln
3 -1 180 2 o)
2 -0.5 120 3 B
1 0 90 4 lu
0 0.5 60 6 b
-1 1 0 (360) 1 b

The above calculation proves that in the periodystal lattice the only rotations allowed are
those of 360/0 180, 120, 90 and 60 degrees, whegsmonds to axes: 1-fold;, 2-fold L,, 3-fold
L3, 4-foldL, and 6-foldLe. As can be seen, the index denotes for the adispiicity. It has to be

emphasized, that the n-fold axis relates n symmeguyvalent points.

Besides the rotation axes, the inversion axes @fishe general Groth symbadly;.

transformations are products of rotation and ineers
Calculations of the respective operator products:gi

-1 0 O
0/=/0 -1 0|=C
-1

o
o
|
=
o
o

-1 0 0)(-1 0 O 1 0 O
L2[010]+C={ 0 1 0|0 -1 0|=|0 -1 0|=P010)

0 0 -1)Ll0 0 -1 0 0 1

0 -1 0)(-1 0 O 0 1 0
L4[001]+C=|1 0 O|| 0 -1 0 |=[-1 0 O |=Lygj

0O 0 1)L0 0 -1 0 0 -1

L3[001]* C = Lg;

These

17
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Le[001]+ C = L3* P(001)= Léi

The above calculations allow to conclude thgtdorresponds to inversion, and the inversion
two-fold axis is the mirror plane perpendicularthe two-fold. Therefore there is no need to use
these inversion symmetries. On the other handindersion 3-fold corresponds to the product of
the 3-fold axis with the center of symmetry, wtithe inversion 6-fold axis is a product of the 3dfol
axis and the perpendicular mirror plane. Numberth@d symmetry-equivalent points for the

inversion axes is shown aéfig. 3.7.

T(=srodek 2(=m) 3(= o trojkrotna 6(=3
symetrii) +$rodek symetrii)
Fig. 3.7.

Black circles denote for points above the projetimane, the open circles denote for points
below the plane. Depending on the fold of axis,iimber of symmetry-equivalent points is 2, 2, 6,
4 and 6 for the inversion axes;,LL,;, Lsj, Lsi and Lg;, respectively.

18
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4. Properties of symmetry. Elements of the pgroups.

In the tree-dimensional space, the symmetry (tcansition) operator S can be formulated as a
3x3 matrix, in which columns describe the equiveef @, by and ¢ unit vectors in this symmetry:

sl <12 €13
S |s21 s22 s23
s31 s32 s33

Result of several symmetries can be described as:
S1(X) =X and S2(X)=X" what is equilentto  S2*S1 (X) = X”

Notation S2*S1 means the product of matrix symmepgrators describing the combination of S1
and S2 symmetries. It can easily be proven tleattimbination of inversion, 2-fold axis or a mirror
plane with the same symmetry results in the idgntit

C*C =L2*L2 =P*P = E

So far we described the symmetry axes parallelimonplanes perpendicular to the system X,
Y or Z axes. Other orientations of the symmetgnednts are also possible. Consider the 2-fold
axis positioned on the diagonal between X and ¥, the grid line with [110] symbol. Such
symmetry converts the X axis into Y and Y into Xhile Z is transformed into —Z. Symmetry

Lz[liO] can be described in a similar way:

01 0

L2[110] involves 2 points: £(x,y,z) = (Y,X,-2) Therefore matrix |1 0 O
0 0 -1

i 0O -1 0
L2[110] involves points b(X,y,z) = (-Y,-X,-Z) Matrix -1 0 O
0O 0 -1

Attention has to be paid to symmetry-equivalentsexftors g and I in the above symmetries.
Both matrices indicate that the length of both gectmust be identical. Therefore such symmetry is
possible only in the systems with=aky, i.e. in trigonal, tetragonal, hexagonal and cidystems.

Combination of any two-fold axis with itself ressiin the identity:

L2*L2 = E

19
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Description of the mirror planes perpendicular e system axes was given in Lecture 3.
Additionally, we can analyze the mirror planes nmgnalong the diagonals between X and Y or X
and —-Y. The matrix description of these symmetisagven below:

0O -1 0
P(110) (x,y,z) = (-y,-X,2) Matrix -1 0
0O 0 1
010
P(liO)(x,y,z) = (-y,-X,2) Matrix 1 00
0 01

Combination of any mirror plane with the same plals® results in the identity:

P*P = E

Does a combination of the symmetry with the samnmersgtry always result in the identity? We
have to negate that statement. Consider the aaitions of 360/haround the n-fold axis. Matrices

describing such a transformations are called géorsta Lets choose the, laxis parallel to Z, and
shown orFig. 4.1

al z} b) z; C) ZL

Aloo1) Loo1 41001
{100} (070) a:ﬁem (070 ah‘oo]
_1010) Y 0101 ¥ (010] ¥
«Tio0] , #71100] £ 1100]
Fig. 4.1

Analysis of 98 rotation Fig. 4.1.9 reveals the images of the transformed unit vectod
allows to find the matrix:

0 -10
Axis L4 [001] Rotationbydd [1 0 0| - Generator
0 0

Calculations performed by subsequent unit rotatgime the subsequent images of the starting xyz
point and correspond to rotations of 180, 270 & 3

20
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0 -1 0/(0 -1 0 (-1 0 O
Rotationof 18%={1 0 0||1 0 0|=| 0 -1 0|=L>
0 0 0 0 0 0

0 -10(-1 0 0 (0 10
Rotation of 276=[1 0 0 -1 0/=/-1 00
0o o Jlo o 0 0

o

0 -1 0(0 10 (1 0O
Rotation of 360={1 0 0[|-1 0 0|=|0 1 O|=E
0 0 V\I0o O 0 0

The subsequent rotations are showFan 4.1.bandFig. 4.1.c Notice the transformation of c
into the same vector. That results from the rotatiround Z axis, which constitutes the set of the
invariant points. That example causes the comnretation (L)? corresponds to Asymmetry.
Generalizing, for all evenik symmetry axes, combination of n unit rotationsegithe kL symmetry.

In turn, combination of n unit rotations aroungresults in the identity.

Other generators of axegLL 3, Lg give:

LoeLo=E
L3 L3*L3=E
Le* Le*Le°Lee Le*Le=E

Every subsequent combination of the unit symmeteates a new image of the starting point
xyz. Thus, number of generated points plus theiistexyz equals the multiplicity of I(Fig. 4.2

DO

Fig. 4.2

Lets introduce the table of the group product. Tingt raw and first column contain the
symmetries found in the space. The intersectiom ohw and a column defines the result of a
combination of both symmetries. If the new symmetrfound, the lists in the first raw and column
has to be completed, and the whole procedure hibe tepeated until the list is consistent with the

21
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table contents. In the example below we analyeetlinee-fold axis with the unit rotation of £20
(O120). All the transformations related t@ are as follows:

O120 O120 O120= 0240 O120 O120 O120= O120 O240=0360=E

and the table of group products for rotations adoumis:

0120 0240 O360=E
0120 0240 E 0120
0240 E 0120 0240
O360=E | 0120 0240 E

Constructing the table of the group products alltevebtain the sets of symmetries in space, in
which the combination of any two symmetries resultfhe third symmetry also acting in that space.
Such sets of symmetries are called groups.

In mathematics, groups are defined as sets of elemacting in a given space with tke
operation defined between the group elements.paceswe define the sets of symmetries described
with the matrix operators and their product asgteip operation. The set of symmetries and their
producte constitute the closed group G if the following@xi are satisfied:

1. For all symmetries a/b G their combination gives another symmetry c, b@rgroup element
ab=cOG
2. For all symmetries a,bl¢ G the associative condition
(e*b)ec = a(bec)
3. ldentity element. For each symmetryl &, the identity element(é G exists such that
aee=-ea=-a
4. Invertibility. For each & G, the inverse element@ G exists such that
ad=dea=e
5. Closure. For all symmetries &JiG closure exists
ab=ba

Such sets of symmetries constituting the closedgg@re called the point groups (classes). The
point groups describe the symmetry of the limiteité space — molecule or the unit cell. Only 32
point groups exist in the’Bpace.

The table of the group products corresponds taxatims of the closed group. Using such table
one can check what transformation is an inversntogiven symmetry or find the identity element.
From the table corresponding tq &xis, the identity element is the rotation by 860 he inverse
element for the rotation by 12@ the rotation by 240and so on.

22
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5. Rules for symmetry combination. Point groupsymnmetry.

Lets call the definition of a group, assuming tiet group elements are symmetries. We define
the symmetries described with the matrix operaaostheir product as a group operationThe set
of symmetries and the operationvill consist the closed group if:

1. For all symmetries a/b G their combination gives another symmetry c, @rgroup element
ab=cOG
2. For all symmetries a,bl¢ G the associative condition
(a*b)ec = a(beC)
3. Identity element. For each symmetryl &, the identity element(é G exists such that
aee=-ea=-a
4. Invertibility. For each & G, the inverse element@ G exists such that

ad=dea=e
5. Closure. For all symmetries &JiG closure exists
ab=Pba

Lets analyze few symmetries acting in the sameespabat corresponds to the axiom 1 of the
group of symmetries. The matrix product allows dalculate the result of the symmetry
combinations. Also, one can use rules for the sgtryncombinations, which give the qualitative
information without necessity of any calculationti. has to be emphasized, that the rules of the
symmetry combinations are the interpretation of itinegtrix algebra and are based on the matrix
products.

Rule 1.

Lets analyze the action of;laxis and an inversion C. Choose axigyL Combination is
described with the equation:

-1 0 0)(-1 0 0} (1 0 O
LajysC =|0 1 0[O0 -1 0]={0 -1 0| = RugOLs
0 0-10 0o -1) 0 0 1

The result is the mirror plangol), perpendicular to the analyzed 2-fold axis. K t@be noted,
that for each even symmetry axis, theid.its sub-group. Therefore, for each even rotaéixis, eg.
L4|| we have:

Lajz* Lajz = L2z and  Ljz* C = RooylU L4

Now we calculate the results of all combinationsyhmetries from the first equation:
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1 0 0)(-1 0 O -1 0 O
Poip*C =|0 -1 0[| 0 -1 0| =|0 1 0| = LyyOPRow)
0 0 1)Ll0 0 -1 0 0 -1
1 0 0)(-10 O -1 0 O
Powg* L2y = |0 -1 0||0 1 0| =]0 -1 0| =C
0O 0 1){0 0 -1 0O 0 -1

We can construct the table of the group produditsateng the above relations. The table below
proves that the symmetries from the analyzed exawgntstitute the closed group.

Loy Po10) C E

La|y E C Roio) La|y

Po10) C E Loy P10
C Pozo) Loy E C
E L2 || y P(01o) C E

The Rule 1 might be generalized: the closed groaptains the even rotation axis, the
perpendicular mirror plane and the center of ineers According to equations below, the presence
of two symmetries implies the presence of the tlsiygdhmetry. The second equation should be
interpreted as follows: combination of the mirrolame and inversion gives the 2-fold axis
perpendicular to the mirror plane, but this axigimibe a sub-group of the eves, bxis.

C = Py,
C = L0OP
P=20C

- L2n °
- P e
- |_2n °

Rule 2

We analyzed the combination of thg, laxis with inversion and the mirror plane perpentic
to the axis. Lets consider combination of theakis with the 2-fold axis perpendicular to it. rFo
simplicity lets choose 4y in the orthorhombic system:

-1 0 0\(-1 0 O 1 0 O
L2||z° L2||y = 0 -10 0O 1 O =|0 -1 O = |—2||x
0O 0 1)L0 0 -1 0O 0 -1

The result of the combination of two symmetriegas another 2-fold axis, also perpendicular to
the main k.. This rule can be generalized: combination of nH@ld axis and the 2-fold axis
perpendicular to it gives n two-fold axes perpealdicto the main k. The appropriate table of the
group products will show all relations in such aseld group. This rule has important consequences.
If n two-fold axes intersect at a given point inase, this results in a presence qf &xis
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perpendicular to these 2-fold axes. Also the presef the intersecting 2-fold axes with the 180/n
angle between them results in the presence akls perpendicular to the 2-fold axes

= Ln b LZDLn = nLZDLn
Angle between adjacent Is 180/1¢
- nL, = LyOnLs

Rule 3

Consider the combination of n-fold axis with thegskl mirror plane. Lets choosek

-1 0 0)(-1 0O 1 0 O
Lojz® Paooy = | 0 -1 0||0 1 0| =|0 -1 0| =Rou
0O 0 1/)Ll0 01 0O 0 1

This combination gives another mirror plane palatethe axis and perpendicular to the first
plane. The group table will prove, that the clogeoup of symmetry can be constituted by the L
axis and n mirror planes parallel to it, with thegke of 180/ between adjacent planes. Presence of
two planes intersecting with such angle resulthél, axis at the line of the plane intersection.

- La « Pl = nP|l,
Angle between adjacent planes is 180/n
- nP = L,||nP

Rule 4

Last rule describes the combination of the evernsion L, axis, the mirror planes and two-
fold axes. The matrix products proves that theeatibgroup of symmetry is constituted by the even
inversion Lpy; axis, n mirror planes (inversion two-fold axes &ecture 3) parallel to it and n two-
fold axes perpendicular to the main axis. The |@-fxes and mirror planes are positioned in a
alternating manner, and the angle between the eljaéements is 180/2n

- Loni » L0 = nbOlon + nPJlkn
Two-fold axes and mirror planes are alternating
- Loni * P|| = nkOlan + nP||kn

Sets of symmetries constituting the closed grougescalled point groups (classes). They
describe the symmetry of the limited finite spacaelecule or the unit cell. Only 32 point groups
exist in the B space. All these point groups can be derivedguiie matrix product or the rules
formulated above. To do so, we have to state $samaptions that have been silently used so far.
They concern the rules of choice for the origin #rsystem axes.

The symmetry elements corresponding to symmetreesh@ sets of points invariant in the given
symmetry. Assume that all symmetry elements caortteg origin 000. This means that for the point
group acting in space, all the symmetry elememshmwough the origin. The origin is defined as one
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of points invariant in all symmetries in a giverogp. Since in groups containing the inversion,

symmetry axes and mirror planes at least one souit pxists, these groups are called the point
groups. As a first rule, the X,Y and Z axes aresem parallel to the symmetry axes. In case the
number of symmetry axes is not enough, the systess are perpendicular to the mirror planes.

Finally, the system axes are selected paralldiléddngest crystal edges.

Below (Fig. 5.1) the way to derive all 32 point groups of symmeigyshown. Procedure
includes the use of the rotation axes allowed ie periodic lattice, their combination with
perpendicular 2-fold axes, and mirror planes pakall perpendicular to the main axis.

A n/m “nm nf2 Am n/mm nn lub An

R

-
E)
3

(2512 (2/m=1m) {mm2=1/mm) 23

/i 22 (Z2m) @n @%
§=3/m @n 32 3m @2 @

/i 422 L2m @ % 432
(6=3/ml 6/m 6mm 622 (6m2) % m3

{23 {m3)
1432 (@3m} (m3m)

=
DE
+

0

O
X
&

=t
&~
3
&
3
3

)

00006
o
B

Fig. 5.1

Some graphic notations are usedragy 5.1, identical to those presented in Lecture 3. Ttesa
of symmetry are denoted as corresponding polygoBach cell contains the projection of the
symmetry elements and the international notatiothef group. Introduction of the international
notation will be presented in the next lecture. wdwer, for better understanding the figure, some
elements are described here. In the internatioottion, the symbol of the,laxis is n,n denotes
for the inversion symmetry axis and m stands fonmor plane.

Lets introduce two terms. The special positiorosifion corresponding to the invariant point for

a symmetry in the group, that means the point lgghgnto the symmetry element. The general
position — position outside the symmetry elememitgrefore corresponding to identity only.
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6. Point groups. Symbolism.

Sets of symmetries constituting the closed groupscalled the point groups of symmetry
(classes). They describe the symmetry of the efithited finite space — molecule or the unit cell.
In the B space, only 32 point groups exist. All these pgimups can be derived using the matrix
product or rules for the symmetry combination anel group product tables. Each of these point
groups has its own symbol.

The Groth symbolism is the simplest. It is the list of all symmetremsisting the group. The
Groth notation uses,Land L, symbols for the rotation axes, P for the mirrcangs, C for the
inversion and E for identity.

Theinternational symbolism of Hermann-Mauguin is used in crystallography dtlvantage is
an ease to describe the symmetry groups contathiggeneralized symmetries (combined with
translations), which occur in the space groups/oisetry. In the international notation, the symbol
for the L, axis is n, accounting for the fold of the rotatixis. The inversion axes are denoted
the mirror planes have the m symbol. The symboltie point groups has several positions, and
each position corresponds to the symmetry of orection or several directions that are symmetry
related. If the axis of symmetry and the mirrcain@ are perpendicular to each other, they describe
the same direction in space, what is accountedwitht both symbols separated by slash and
occurring at the same position.

Groth symbol International symbo
Identity E Ly 1
Inversion C 1
Mirror plane P m
n-fold axis Ln n
n-fold inversion axis hi n

The international symbolism is used in the crysgatphic or chemical literature, where the
crystal data are reported. Therefore, it is imgnarto understand its system-specific rules.

1. Triclinic system. The cell parameters are gthgtco ando#B#y. Since the angles might have
any value, no directional symmetry elements ocecuthis system. However, the identity and
inversion (1-fold inversion axis) can act in sugace. Therefore, only two point groups can be
defined. The international symbol has only oneitgos and contains an information on the
presence or lack of the symmetry center:

1; 1.

2. Monoclinic system: gbo#co and a=y=90° < B. Besides E and C, they|ly, Pg, or both
symmetries might act in such space, and their mptoduct results in the presence of the inversion.
That gives three possible point groups. The irtonal symbol has only one position, describing
the symmetry of Y direction [010]:
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2, m, 2/m

3. Orthorhombic system:g#bo#co and a=p=y=9(°. Each of the axis direction is similar to the
monoclinic Y — it is perpendicular to the remainitvgo axes. Therefore, all these directions can
reveal the k| or Ry symmetry. Since three directions might have ckifi¢ symmetry, the
international symbol consists of three positioreflecting the symmetry of [100], [010], [001,
respectively. The matrix products prove only thpeet groups:

222, mm2 and 2/m2/m2/m.

The comment is necessary. In the mm2 group, iteettbn of the 2-fold axis defines the Z
axis. In the third group, the 2-fold axes are [paréo X,Y,Z with three mirror planes perpendicula
to them, what results in the presence of inversiAncording to the rules of symmetry combination
for the even rotation axes with the perpendicul@ran planes, to define this group, three mirror
planes perpendicular to each other fully definehsgmup. For that, the short symbol mmm is
frequently used in the literature.

4. Tetragonal system: a#b; a=p=y=90". Consistently with the system name, the 4-folis axf
symmetry is the leading transformation. The uelt shape indicates that, br Ly; are parallel to the

Z axis, X and Y can reveabk, or Pj; symmetry. However, the group product tables iaigichat
the number of such,lor mirror planes has to be equal to 4. Therefloeeinternational symbol has
three positions, describing the symmetry of Z, X & [110] and 110]. Please, note that X and Y,
but also [110] and1[10], are related by SQotation around Z. Therefore, these pairs ofdlioas
are described in the same position. Considerihgyaimetry combinations leads to 5 point groups
with L4 and two with the L; axes:

4; 4/m; 422; 4mm; 4/m2/m2/m4; 42m
The short symbol for group 4/m2/m2/m is 4/mmm.

5. Cubic system: a=b=m=p=y=9(°. Each coordinate axis is similar to the tetrag@haxis and
might reveal the L. symmetry. Due to identical X,Y,Z, all symmetrygps contain 4 . axes on the
cell space diagonals (4 directions [111] and edaitq Additionally, for each of X,Y,Z direction,
one has to account for 4 perpendicular directiomgny L, or P symmetry, as was done for the
tetragonal system. The resulting international lsghhas three positions, describing symmetry of
X,Y,Z, [111] and equivalents, and [110] and equeve. The first position corresponds to the
symmetry of the unit cell edges (3x), the second tithe space diagonals (4x), while the third
position to the cell face diagonals (6x). Possgstaups:

23; 2/m3; 432; 4/m32/m#A3m.
Short symbols for groups 2/m3 and 4/m32/m are ni3raBm, respectively.

6. Trigonal system with the hexagonal coordinatesaa=kc a=p= 9¢° y=120F or rhombohedral

axes a=b=cp=B=y#90°. The system name indicates the leading symmétnee-fold along Z axis

(hexagonal choice) or along the cell space diagfrhaimbohedral coordinate system). Symbol has

two positions: symmetry of Z, and symmetry of X,Ypérpendicular to Z (hexagonal), or space

diagonal (rhombohedral choice) and 3 perpendidalifactions. Point groups based ofllb Lg;:
3;32;3m;3; 32/m

For 32/m the short symbol i3m.
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7. Hexagonal system: azb a=p= 9¢° y=120. The system name contains the information about
the leading axial symmetry;lor Lgi. Consistently with the cell geometry, such synmakes can
reflect the symmetry of Z axis. Three directioesgendicular to Z and intersecting each other with
the angle of 120 possessing the symmetry of 2-fold axis or theeniplane, are chosen as X,Y,U
axes, while at diagonals between them additionaketlexist (consistent with the rules of symmetry
combination betweenland 2-fold axes perpendicular to it). Therefdhe international symbol
has three positions. First position reflects tymametry of Z axis, the second one correspondsdo th
symmetry of X,Y,U and the third position descrilbles symmetry of diagonals between X,Y,U. The
possible point groups:

6; 6/m; 622; 6mm; 6/m2/m2/m6; 62m
For group 6/m2/m2/m the short symbol is 6/mmm.

Theoretical chemistry and spectroscopy useSttioenflis symbolism Basis for this notation
is the symmetry axis of the highest fold, and tinedamental assumption is that this axis is vertical
The group containing identity and the n-fold axigsd.G,. For the inversion axisl, the symbol jest
Chi is used. The mirror planes are described byrtetie the lower index, which reflect the
orientation of the plane relative to the leadingsaxThe mirror plane perpendicular to this axis
(horizontal) is indicated by h, plane parallel i$vertical) or d (diagonal). The set of the symiyet
axes l, + nLy is described with the symbol,D The special symbols used for the groups with the
inversion or a single mirror plane aregdhd G. Symbols for the point groups in the cubic system
(containing four 3-fold axes) are Ty, Ty, O, Q, for the tetrahedral and octahedral system of
symmetry axes (T and O, respectively). These mileshown in the table below.

1. L, Cn
2. Lni Cai
3. L, + n Lo Dn
4, Lo+ n A Chv
5. L, + P Con
6. Lo+ n Lo+ Potnh Dnn
7. P Cs
8. Lyi G
9. 3L+ 4Ls T
10. 3L+4l;+3P+C Th
11. 3Ly + 4L + 6L, @)
12. 3L +4l;+ 6L, 9P + C On
13. 3Ly + 4L5 + 6P Oy

The international, Groth and Schoenflis notatiarrsail 32 point groups of symmetry occurring
in the 3D space is shown &ig. 6.1 This figure corresponds tg. 5.10f the previous lecture.
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n a n/m nm n/2 am n/mm nn lub an
1 T m 23
L C P, L3iL}
C, C; C, _ T
L' (o} (m=1/m) P 2=12 2/m = 1m) (mm2 = 1/mm) 413312
2 2/m mm2 222 mmm m3
L3 LIC Lip, LI} LILIC LiLiC
G, Can 20 D, _ Dz T,
L? C=m) L2PC L?2P 3L? (42m) 3L*3PC 4L33L23PC
3 3 3 3m 32 3m 6m2 43m
L2 L:c L:P, Lip, B2 EEC L3P, At A3
Cs Cy Cis Cs, D, D3y D3, T
) e ’c L*P L3P P3r? L33L*3PC L33L%4P 3A*4L36P
4 3 4/m 4mm 422 42m 4/mmm 432
Lé A? LEC. LiP;  5og 2 AiL? L{LIC L3LS
C, Sa Can Cao D, D4 D o
L* A* L*PC L*4p L*4L? A%2L%2P L*4L*5PC 3L*4L36L*?
6 6/m 6mm 622 6/mmm m3m
L2 L¢C LLP, LSL2 ELLC LiL}C
C6 Céh C6v DG — Dﬁh Oh
E® 6 =3/m) LSPC L56P LS6L? (6m2) LS6L*7PC 3L*4L36L*9PC
(23) _ (m3)
(432) (43m) (m3m)
Fig. 6.1

Knowledge on rules of these symbolisms, in paricthe international symbols used in
crystallography, is important for understanding litexature reports and the structural data inatude
in many papers or in the Cambridge Structural Degal{CSD).

It has to be reminded, that all symmetry elementthée point groups run through the system
origin at 000. Consider the 222 group. Sincedlae three positions in the symbol and only 2-fold
axes of symmetry, that symbol corresponds to tbhemfrom the orthorhombic system. Therefore,
the subsequent positions in the symbol describestimemetry of X,Y and Z of the coordinate
system. The set of the invariant points in thisugrcan be specified. The X axis is a set of {x00}
points, Y and Z are sets of {Oy0} and {00z}, respeely. Each point of such coordinates has the 2-
fold axis symmetry. One point exists, which sasfall the conditions specified above — it is 000.
That point always has the highest symmetry possibl@a given point group — here the 222
symmetry. The position in space, having a nontileeymmetry defined in a given group is called
the special position Consequently, any other point with coordinatgg different from these
mentioned above has only the identity symmetry)1l @ich positions are callggneral positions
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7. Point groups of symmetry. The symmetry-equivajents.

Isometries such as rotation axes, mirror planesiaversion, which preserve the distances, are
the elements of the point groups. Transformatiomsesponding to these symmetry elements are
described with 3x3 matrices. Such formalism isdu$er calculating the coordinates of the
symmetry-equivalent points (related by symmetrygpoading to the equation:

sl1 s12 s13) (x X
S21 S22 S23||y|=|VY
s31 s32 s33) |\ z z

It has to be reminded, that the symmetries actinpe crystal can be recognized by analysis of
the crystal morphology — the external shape ottiystal (Fig. 3.1 Lecture 3). Crystal faces redat
by the symmetry have identical shape and size.k lab@ser to that statement. In 3D space, plane
(hkl) is defined by three points of the coordinatees intersection: H{#,0,0], K[0,k/k,0] and
L[0,0,c/l] or the equivalent vectoH[h,k,l]]. Symmetry S transforms these points intiheo,
symmetry-equivalent points according to equattérih’,k’,I'l = S H.

St Stz Siz
h'=1|s, | H k=1s, | H I'=|s,;|H
Sy S, Si3

Calculation of Miller indices of the plane resugfifrom the (hkl) transformation is show below.

0 -1 0
Plane (hkl) has its equivalent in the transfornmatigllz |1 0 O
0 0 1

h'=0h + 1k + Ol = Kk
k'=-1h + 0k + 0l = -h
| =0h + 0Ok + 11 =

Faces (hkl) (k,-h,l) are related by symmetry, syrmgrequivalent, and they belong to the same

form. In crystallographyform is defined as the set of planes (faces) relatealltsymmetries in the
given symmetry group.

Consequently, the simpler equation can be giveshtoten the calculations:
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s11 <12 <€13) (h h
s21 s22 s23| | h|=|k'
s31 s32 s33) (| I

The same matrix of the axis of symmetry relatesgdahkl) and (k,-h,l), or atoms (points) x,y,z
and y,-x,z. Back toFig. 5.1 one can see that in many point groups there amebau of
transformations generating the symmetry-equivatembts. The question raises — how many such
points are in each point group.

To answer his question, we have to analyze the ruitsymmetry-equivalent points for single
symmetries. Below, these numbers are given forswathmetries occurring in the point groups.
Number of the symmetry-equivalent points (Poligirs) includes the starting xyz point and all its
images in a given symmetry.

1. Identity E(X,y,2) = (X,y,2)

Number of the symmetry-equivalent points: 1
2. Inversion C(x,y,z) = (-X,-Y,-2Z)

Number of the symmetry-equivalent points: 2
3. Two-fold axis eg. #1001 (X,Y,2) = (X,-Y,-2)

Number of the symmetry-equivalent points: 2

4. Mirror plane eg. o) (X,Y,2) = (-X,y,2)

Number of the symmetry-equivalent points: 2
5. The n-fold symmetry axes
(L)’=E  Number of the symmetry-equivalent points: 2
(Ls)*=E  Number of the symmetry-equivalent points: 3
(L)*=E  Number of the symmetry-equivalent points: 4
(Le®=E  Number of the symmetry-equivalent points: 6
6. Inversion axes — combination of the n-fold syrtrsnaxes and inversion
L;ij=C Number of the symmetry-equivalent points: 2
Li=P Number of the symmetry-equivalent points: 2
Lsi=LsC  Number of the symmetry-equivalent points: 6
L Number of the symmetry-equivalent points: 4
Lei =L3P Number of the symmetry-equivalent points: 6

Knowing the action of a single symmetry, one caalyze the point groups. Consider the group
2 (&). The only non-identity isometry is the 2-foldigxwhich has 2 symmetry-equivalent points.
However, adding other symmetries will complicate dase. In group 2/m £ there is an axisiL
[010], inversion C and a mirror plane P(010) pecpemar to L.

Combination of symmetries increases the number hid symmetry-equivalent points.

According to the rules,A*C =P or P*C =L orL, * P = C. Lets search for all points that are
symmetry-equivalent to xyz. The dependencieslawe/s on the scheme below.
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XY,z - C - -X-Yy,-Z

| l
L2 P L2
l l

XY,-Z - C - X,-y,z

Transformations in rows correspond to the imagse® by inversion C. Transformations in
columns correspond to the 2-fold axis. Points lom diagonals are related by the mirror plane.
However, number of the symmetry-equivalent poirds4i and not 8, as might be expected
considering the product of the number of pointatesl by each symmetry in the 2/m group. What is
the reason for that? The first combination rubdest that the presence of two symmetries results in
the presence of the third in the above exampleeréfbre, only two symmetries are independent,
while the third one results from their combinatioNumber of symmetry-equivalent points can be
calculated by multiplying the numbers for the ineleggent symmetries in a given group, and matrix
calculations or the combination rules define thpeshelent symmetries. In the analyzed group:

lprs =2 x 2 =4.

The asymmetric part of the space is defined asebiprocal of the number of the symmetry-
equivalent points. For the analyzed group, thenasgtric part is 1/4.

In the 422 group, the axi¢001] has 4 symmetry-equivalent points, and each axes L has
two symmetry-related points. However, number & symmetry-related points Iprs = 4 x 2 = 8,
according to the combination ruley(t L, = 4L,).

In group 4/m 3 2/m of the cubic system, the lissginmetries includes 3,14 Ls, 6 Ly, 9P and
C. However, according to the combination rules tfee symmetry axes, parallel planes and the
inversion, the independent symmetry elements ai@agle 4-fold axis, one 3-fold axis, one 2-fold
axis and the inversion. Therefore, the numbeywofraetry-equivalent points is 48.

Iprs =4x3x2x2=48

It has to be emphasized, that this is the way tfutating the number of points in general
positions. For the special positions, some symggetmight transform the certain point into the
same point. The point in the special positionb@snging to the symmetry element, is invariant in
the corresponding transformation. Therefore inhsoase, the number of the symmetry-related
points is less than Iprs by the factor relatedh® given symmetry element. For example, in 422
group and a point positioned on the 4-fold axisnbar of points related by the group symmetry is 4
x 2 /4 =2. For a point on the 3-fold axis in #alyzed group 4/m 32/mitis4x3x2x 2/ 36

Lets summarize the properties of the point groups.
1. Point groups describe the symmetry of thedinlbsed space: molecules or a single unit cell.

2. Symmetries relative to the point, line and plamd the group operation satisfies the axioms
(associative condition, identity element, invetttlj closure) giving the closed groups.
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3. All symmetry elements intersect at least in pomt. Consequently at least one point exists
that is invariant for all symmetries in the givesing group (a point and its image are identical).

4. One of the invariant points for all symmetriésfines the system origin 000. In the
centrosymmetric groups the origin coincides with tenter of symmetry.

5. Special positions — points belonging to the eyatmy element corresponding to the symmetry
in the given group — the invariant point of thisrsyetry.

6. General position — points are not invariantday symmetry in the group — have only C
symmetry.

7. The symmetry-equivalent points — point xyz afidts images in all group symmetries.

8. For a description of the whole structure, tksaliption of the asymmetric part (asymmetric
unit ASU) is required (one plane from the {hkl} forin a given group, atoms giving all other as the
symmetry related images) and the transformatior@sgiven group with their matrix operators.

9. Number of the symmetry-equivalent points i<gklted as the product of number of points
associated with the independent symmetries in aipgrehose generating all other symmetries
according to the combination rules.

Understanding of rules in the point groups, inipatar the possible special positions, allows to
hypothesize on the possible molecular architectufée molecular symmetry corresponds to the
symmetry of the point group, or its point sub-grodmalyze few examples.

Complex [NiCl, (NH3),] reveals symmetry1.

Inversion acts in this group with 2 symmetry-eqiewa points. If one knows the unit cell
volume, determination of the crystal density alldwsalculate the number of molecules in the unit
cell. Density is defined as the quotient of masd @olume, and mass of the cell depends on the
molecular mass M of the compound and a number ¢éeates in the unit cell Z:

m _ 1.660&ZM 1.6604M
= VTN 7 =

d=—
Y, Vv dv

Number 1.6604 is a gram equivalent of the moleauass unit if the cell volume is given irt,A
what is allowed for the scientific literature, atigh it is not in the S| system. Lets consideesav
cases of the calculated Z value:

Z=1 Molecular symmetryl with Ni ion at 000. Since only Ni ion is in theotacule, it has to
be an invariant point for inversion. The molecidggmmetry might be respected only for the trans
isomer with the square-planar architecture of therdination sphere. The center of symmetry
excludes the complexes with the tetrahedral arctute. With such molecular symmetry, both Ni-
Cl bond lengths are identical and the CI-Ni-Cl angé 180. The same concerns the Ni-
N(imidazole) bonds.

Z=2 Molecular symmetry 1. All atoms, including Nire in the general positions, so the
molecular architecture is arbitrary.

If the calculated Z value is 4, the asymmetric &U contains 2 complex molecules. Other Z
values correspond to the combination of molecuf&€s and G symmetry.
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Crystal of difluormethane CH_F, reveals symmetry 2.

This is the monoclinic group with a singlg &xis, so 2 symmetry-equivalent points exist. The
determined crystal density corresponds to Z=2 dr.ZEhe molecular symmetry:

Z = 2. Symmetry L— this is the general position

Z = 1. Symmetry of k. axis. Since only one carbon atom is in the madé&dt has to be the
invariant point, positioned on the 2-fold symme#is. Since in the monoclinic system this axis
direction is [010] and it runs through the systemgia, the C atom coordinates are 0y0. The 2-fold
axis runs through the diagonal of H-C-H and F-Qafles.

Consider a more complicated example. Crystal oin water molecules crystallize in the
mmm group. What is the molecular architecture?

In the orthorhombic group mmm, with the full symi&n 2/m 2/m, the symmetries are:,3L
3P, C. As in all point groups, the symmetry eletsantersect in a common point, which is the
system originfig. 7.1).

Several special positions and general positiontdristhis group. The possible positions
corresponding to the points shownfeg. 7.1reveal different symmetry:

- Point 1: molecule is positioned around 000. HSutolecule has the mmm symmetry.
Calculations would prove that each symmetry reldtsspoint to the same point, what means that in
this group a number of points (molecules) withitimam symmetry in the unit cell Z=1.

- Points 2: molecule is positioned on one of thimld-axes. However, that means the mm2
symmetry, since molecule must have the symmettyvofperpendicular mirror planes intersecting
along this L axis. The special position of such symmetry gpomds to coordinates x00, Oy0 or
00z. It can be shown that for all these positidhs, number of the symmetry-equivalent points in
the unit cell Z=2.

- Points 3: the special position on the mirror plgrbut not the 2-fold axes. That corresponds to
coordinates 0yz (BX), x0z (FJY) or xy0 (FJZ). The point symmetry is m, and only for this
symmetry this point is invariant. For all thesesgible positions, the number of symmetry-related
points is Z=4.

- Point 4: the general position with no local synmpetherefore corresponding tq Bymmetry.
Number of the symmetry-equivalent points in thet gell Z=8.
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Number of the symmetry-equivalent points (in thenegal position) can be calculated as a
product of Iprs for the independent symmetries. tha analyzed group these are three out of 7
symmetries { 3L2, 3P, C }. Therefore for this gpouprs = 2 x 2 x 2 = 8. The asymmetric unit
ASU is defined by the independent symmetries andadt®ulated as the reciprocal of the number of
symmetry-equivalent points. Determination of thrgstal density would allow to calculate the
number of molecules in the unit cell giving Z=8,4Z=2 or Z=1. What are the consequences for
the water architecture?

Z=8. Molecule in the general position — we do kibw its position, and the molecule cannot
reveal the non-identity symmetry. (PoinFigy. 7.1)

Z=4. Molecule in the special position. The queti&/lprs = 4/8 results in half of the molecule
in ASU. Considering all possibilities in the mmmogp, molecule can reveal only the m symmetry.
Therefore the coordinates for the oxygen atom §@ey(2] or O[x,0,z] or O[x,y,0] (Point &ig. 7.1).
There might be two orientations of the moleculatieé to the mirror plane. The first one: all atom
are positioned on the plane, and are invariarti;sddymmetry. No symmetry relates the positions of
H atoms, and two O-H bonds are different. Secdmel:mirror plane is perpendicular to the plane
defined by the water molecule and runs throughdibgonal of H-O-H angle. Position of oxygen
atom is invariant in this mirror plane symmetry.owever, two H atoms are related by the mirror
plane, so both O-H bonds are identical. The gqoesthises if both these possibilities might occur
simultaneously? That is exactly the next point.

Z=2. The special position with the symmetry of twerpendicular mirror planes, the
combination of which results in the symmetry — symmetry mm2. The oxygen atom cootdsa
O[x,0,0] O[0,y,0] or[0,0,z], and is invariant inldhese symmetries. However, the H atoms are
positioned only in one mirror plane consistent wiith molecule plane. Their coordinates are related
by the other symmetries of the sub-group i.e. HkJ@nd H2 [0,-y,z].

Z=1. The special position around 000 origin — syetry;m mmm, therefore including the
inversion. There is only one O atom in the molecab O[0,0,0] would be possible. However, the
H-O-H valence angle is not 180vhat excludes the inversion symmetry for watetemale. This
position is not allowed, until there is a statigtidisorder of the water position.

Such analysis can be performed for all groups ofrsgtry. If the quotient Z/lprs is 1 or other
natural number, the molecule is in the generaltjwsi In such case, the atomic positions and the
molecular symmetry cannot be determined for thestigated crystal. If the density determination
gives the number of molecules Z smaller that Ighgt results in the special position and
consequently the internal symmetry of the moleculden, having the possible symmetry for the
special positions, one can count the atoms ofl@thents and consider if they must be the invariant
points in the symmetries, as was done in the ex@anpbove, or have to be related by the
symmetries, as carbon atoms in the benzene moletthe Ls symmetry.
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8. Translation symmetry elements. Space groups.

Symmetries constituting the point groups were desdrwith the matrix operator 3x3:

X Si S Ss X
X =S¢ X Y{=|S1 S» Ss|*|Y
z Sii S Sy z

Real crystals are the periodic objects, with thadfational repetition of the unit cell. Therefore
to describe the matter distribution in the wholgstal, one has to account for translations. One
element of such description is the cell centering ¢he Bravais translation lattices (Lecture 2).
However, there are also other translations as®utiaith the translation symmetry elements, which
are the generalization of the symmetry elementsudised previously. The translation symmetry
elements correspond to the transformation compot#te symmetry and translation by a fractional
vector parallel to the symmetry element. Two kinflsuch symmetries are defined — the screw axes
and the glide planes.

The matrix operators for such symmetries (transé&tions) in the space groups can be given as a
combination of symmetry S and translation T:

X Si1 S2 S X t,
X'=Se X+T Y =|Sn S» Ss|* Y|+t
z S;i S; Sy z t,

For convenient multiplication of such operators &manulation of the symmetry groups, these
transformations are described with the 4x4 operatorThe 3x3 block corresponds to the symmetry
component, the last column contains the componeitbe translation vector, and the matrix is
completed with the fourth row in order to define #x4 matrix:

Su S Ss L
X'=S'e X S'= S S Sp ty
Sy S» Ss b
0O 0 0 1

Based on the definition of translation symmetrye thianslation vector is parallel to the
symmetry component of the translation symmetry eleim Therefore, the translation equivalent of
the inversion is not defined — there is no transtavector parallel to the point.

Lets introduce the international symbolism used tfog translation symmetry elements and
corresponding transformations. The translatiogaivalents of the symmetry axeg &re the screw
axes. The screw axeg are defined as a combination of the rotation @86and translation by the
vector m/n of the unit lattice translation along gymmetry axis, with m defined by the lower index.
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For example, symbolsf)01] corresponds to the rotation of’&®mbined with the translation of
5/6 @. In the monoclinic system the 2xis is a combination of the 18@btation around Y and
translation of B2 vector. If the g111] axis is considered in the cubic system, iangethe rotation
of 120 combined with the translation of 1/3(& by + @). Such translation results from the unit
lattice translation linking two closest points & fgrid line - 000 and 111 on the cell space diabon
Notice that m is the natural number and its vahrges from 1 to n-1. If m=0, the translation @& th
zero vector combines with rotation, and the trams&dion is a normal rotation. Value m=n
corresponds to the unit lattice translation to dugiivalent point in the adjacent cell, what also
corresponds in the periodic crystal lattice toribemal rotation axis.

The glide planes are described with the letter sytmib Planes a, b and ¢ correspond to the
combination of the mirror plane symmetry with thenslation of a/2, b/2 or ¢/2 vector parallel te th
mirror plane. Planes n are the combinations oftiiveor planes and translations of (a+b)/2, (b+c)/2
(a+c)/2 or (at+b+c)/2 vector. Planes called d dre tombinations of the mirror planes and
translations of a+b)/4, (b+c)/4, (a+c)/4 or somesnfa+b+c)/4.

Lets analyze the action of the screw axEgy. 8.1shows the comparison of axes 2 and Ror
axis 2, rotation of point;aby 180 results in point 2 which in turn is transformed back ta arhese
two points are symmetry equivalent. The unit ¢attiranslatiort gives the images of these points in
subsequent cells {and a, & and @) also related by the 2-fold axis. Look at theescraxis 2.
Point g is transformed into,aafter the rotation coupled with the translationlé#. That point in
turn is transformed intozashifted by t/2 relative to,and byt relative to a Such transformation is
an open transformation — we cannot get the starpogt a as a result of its subsequent
transformations by 2axis. The reason for that is a non-zero trarslatoupling with the rotation
axis. The other consequence of the action of sleiments is a formation of additional layers of
nodes (molecules) of the coordinates 0, 1/2, I,&/d so on when compared to the layers with
coordinates 0, 1, 2 and so on for the normal ratagéixes. It has to be stated that for both 2 and 2
the direction of rotation is not important. Botight-handed and left-handed rotations give the
identical matter distribution

2 2 3
- o @
(s s P
O0——0 e
a, a a, "'6
r Ot |1 At
a, a, L ] ay %L‘Eal@
Fig. 8.1

There is also another important difference betwhere transformations. Consider the matrices
describing both these symmetries, choosing the][@ik@ction of the rotation axis. Lets assume
both axis run through the system origin.
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-1 0 0 O -1 0 0 O
0100 01 0 1/2
2[010] o 1 o @d 2010] 5 1o
0 0 0 1 00 0 1

The simple calculation allows to determine the dowtes of the xyz image in both
transformations. These points are —x,y,-z and +¥,%, respectively. Lets transform the 0yO point
positioned on the rotation axis. Its image in theymmetry is the same point —invariant for this
symmetry. Calculation for the;2axis gives the coordinates 0,1/2+y,0. This resalh be
generalized for all screw axes — such symmetriesaddnave the invariant points, even if the points
are positioned on the rotation axis. Therefore dtrew axes cannot reflect the molecule symmetry.

Consider the screw axes related toals shown orrig. 8.2 The normal 3-fold axis has three
symmetry-equivalent points in the cell, forming thger analogous to those in the 2 axis, while the
other layers are shifted by the unit translatianm its integer multiple. Contrary, the &xis with the
marked rotation direction of the high-handed (cleide) rotation forms 3 layers of the symmetry
related points in the cell, with coordinates z,+¥/3and 2/3+z. The other equivalent layers
correspond to the shifts by the integer multiplé.ofr he right-handed,3axis results in layers of the
coordinates z, 2/3+z, 4/3+z and so on. Since tiitetnanslationg act in the crystal lattice, the latter
one has its equivalent at coordinate z+4/3-3/3 odif8+z. The careful analysis of the figure
indicates that this axis can be in fact the leftded 3 axis, since its matter distribution is identical
to that of the right-handed, &xis. Therefore, it is enough to use only thétriganded axes. The
other consequence — the right-handedaRis and left-handed;3(being right-handed .3 are
enantiomorphs. The pairs of the enantiomorphiewsaxes consist of.nand n., axes. Therefore,
such pairs are;3and 3, 4 and 4, 6, and @, 6, and G. Axes 3, 4, or 6 are enantiomorphic to
themselves — for these axes the rotation direcsiomt important since the matter distribution wbul
be identical.

Similarly, the glide planes do not have the invaripoints and cannot reflect the molecule

symmetry. Comparison of the sets of the symmegunv@lent points for the m mirror plane and the
glide plane Fig. 8.3 indicates that the latter forms the additionad@tayers separated by t/2.

a) t b)
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Presence of glide planes in different orientatienglustrated onFig. 8.4 If we consider the
glide planes perpendicular to XYZ axes of the cowmt system, the limitation is the required for
translation parallel to the symmetry plane. Thdegplane perpendicular to X has the (100) symbol.
According to definition, the translation vector rhuse parallel to this plane, so its fractional

components must be parallel to Y or Z. Thereftive,possible (100) glide planes can be b, &;ﬁr)(

4

or d (2°). For (010) glide planes perpendicular to thexisathe possible planes are a, c,i;ﬁ]{

and d @). Analogously, for the (001) orientation excluglithe z component of the translation
vector, the possible glide planes are a, b, nand d

The symmetry groupsspace groups can be formulated from these generalized symasetri
The complete list o the group elements can be ddaby applying all the axioms in the definition
of the closed group and the matrix algebra (ordbmbination rules). The combination rules are
identical with those introduced for the point greupAlso the number of symmetry-equivalent points
for the translation symmetries is the same asi#®@mnbn-translation symmetries.

The international symbol of the space groups ctsi$ two elements: the symbol of the
Bravais cell and the symmetry (translation or n@mslation). Rules of the international symbolism
are the same as for the point groups. Numbereoyimmetry-equivalent points is calculated as for
the point groups, taking into account the indepahdgmmetries. The multiplier associated with the
number of the translation-equivalent points in Bravais group has to be used. For the P, A(B,C) |
and Fitis 1, 2, 2 and 4, respectively, and isatputhe number of nodes within the cell of theegi
type. Two examples illustrate the space groupiBpige.

Consider the space group;R2 Symbol P denotes for the primitive cell. Tgreup belongs to
the monoclinic system, what becomes obvious akgpmg all the translations in the symbol, not
used in the point group symbol. The associatedtgwoup is 2/m. Therefore, the orientation of the
symmetry elements is as follows: axigly2has a symbol [010], the plane c || X,z hasleMiymbol
(010). The respective translations are X/fob2; and 1/2 g for the plane c. The combination rules
suggest that the result of the symmetry combinatidhe inversion. Position of the inversion cente
can be determined by the matrix produgts 2 = P’

-1 0 0 0)(1 0 00y (-1 0 0 O
m_|0 1 0 % j0-100 0 -1 0 3}
0 0-10[]0 0110 0 -1 -3
000 10 001/(0 0 0 1

Interpretation is as follows: P’ is the inversicgnter C. The fourth column corresponds to the
translation T[0,1/2,-1/2]. This translation is died into components parallel to the generated
symmetry element and others. In our case, forirtkiersion center the whole translation is not
parallel. Half of this translation is related teetposition of the generated element - it corredpda
the shift from the point or line of intersectiontbie combined symmetries to the final position. In
this example T = T||[0,0,0] +(10,1/2,-1/2], and the inversion center is at p§int/4,-1/4].
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Another example allows to answer the question whkatlts from the combination of the
symmetries. Consider the group PnaPhe question mark reflects the ambiguity — axisr 2.
Omitting the translations make the interpretatibraightforward — the associated point group is
mm2 and belong to the orthorhombic system. Theeefloe n plane is perpendicular to X, has a

(100) symbol and translatio@ﬁ. The a plane is perpendicular to Y, the Milleméypl is (010) and

the translation is, . The matrix product gives:

-1 000)(1 002 (-1 00 -1
m_|0 103 j0-100/|0 -10 }
0 01|00 10 [0 01 1
0 0010 0 01){o0 0 0 1

Interpretation: the resulting symmetry is the aki$jz + T]|[0,0,1/2] + T[-1/2,1/2,0]. The
parallel component of the translation js what corresponds to thg 2xis. The space group is

Pna23. This axis is shifted by 1/2[1-1/2,1/2,0] so by [-1/4,1/4,0] relative to thedirf the planes
intersection. If the z component of translationwdobe zero or other integer, the resulting element
would be a normal 2 axis. Such analysis can béommeed for all 230 space groups giving the
spatial positions of the symmetry elements, setghef invariant points and positions of the
symmetry-equivalent points. Results of such amalgse published in the crystallographic literafure
in particular in thdnternational Tables for X-ray Crystallographg fragment is shown dfig.8.5

P2, C% 2 Monoclinic
No. 4 P12,1 Patterson symmetry P 12/m |
UNIQUE AXIS b
O — ,,"/Q —n . .5
[} f (] = [ -
ot — e

Origin on 2,
Asymmetric unit  0<x<I; 0<y<Sl; 0<z<i
Symmetry operations

M1 (2) 2(0,4,0) 0.y,0

Fig.8.5
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9. Diffraction of X-rays. The powder method.

Chemists face the question what is the substaree dbal with. It can be answered by the
elemental analysis and spectroscopic methods.uEngly there is a need to determine the molecular
geometry or the network of intermolecular interas. This is a domain of crystallography.

Analysis of the crystal morphology, spatial relasdbetween identical faces or edges, reveals
the symmetry and allows to assign the point grouphe helpful tools are the stereographic
projection with its ability to measure angles amdedmine zones, rules of the group symbolism, as
well as the matrix algebra or equivalent rulesyohmetry combinations.

Symmetry of the crystal lattice is a translatiomayetry (screw axes, glide planes) and the
Bravais translation groups. Here again the rufesyoxmetry combinations and relations between
the point groups and the space groups are necessaryever, the geometric crystallography lacks
the tool to determine which symmetry from the maiplyy corresponds to the translation symmetry
in the crystal space. To analyze the molecule g#gnand intermolecular interactions, one needs
the crystal lattice geometry, including the unitl amnstants and cell volume, and positions of
molecules. Also for that, the rules for the chaieéhe coordinate axes are needed, combination of
symmetries and determination of the crystal densityhe key role is played by the X-ray
crystallography, which allows to determine the @atameters, as well as the space group from so
called systematic absences.

The X-rays can be generated in several ways. diahoratory, the simple way is to use the X-
ray tubes. The electric potential is applied benvéhe tube anode and cathode. The electrons
pulled out from cathode are accelerated and collidle the anode atoms, resulting in knock out of
electron from the anode atom inner shell. In grscess, the rule of the energy conservation can be
written:

Ea=B+E+h

Energy of the incident electron equals the enefftgr aollision (&, E; ) and its excess is
released as the radiation photons. If the appaitgopotential difference is used, the lamp gensrate
the X-rays. This radiation has enough energy tommaexcitation. This process results in a
continuous X-ray spectrum. Subsequently, the va@eann the atom electronic shell are filled by
the spontaneous transfer of electrons from theratiglls. This process is accompanied by emission
of the radiation of the energy corresponding to émergy difference between shells, what is
characteristic for the anode material. In this whag spectrum characteristic for the anode elements
is generated. The obtained X-rays directed towd#ndscrystal have the appropriate energy and
interact with crystal atoms by interacting withithelectrons and causing internal transfers between
the excited and basic states. The spectrum ofyX-ganerated in the tube is the superpositionef th
continuous spectrum and characteristic emissioeslicorresponding to K, L, M series (Lyman,
Balmer and other) .Fig. 9.1). This radiation can be monochromatized in sdvemys. The
simplest method is to run the beam through a nfethprepared from the metal differing by 1
atomic number from the anode material. In thisedh® maximum absorption occurs between the
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characteristic lines, decreasing also the intenaitthe range of the continuous spectrum. The X-
rays of the wavelength 0.5 - 2.5A, comparable with the inter-atomic digtas, are diffracted on the
crystal and are useful in the crystallographic aese Depending on the method, the used radiation
is monochromatic or has the continuous spectrum.

natgzenie zrodla

/\j S~
A

. M
Fig. 9.1. Fig. 9.2

natgzenie przepuszczone  absorpcja filtru

The incident beam is reflected on the crystal dr&drésulting beams interfere with each other.
This phenomenon can be described using the reftedbormalism of Bragg or the diffraction
formalism of Laue. Lets use the former one.

The monochromatic beam is directed towards thefsparallel (hkl) lattice grid planes distant
by dw and interacts with atoms of the molecules repteseby the grid pointsHjg. 9.2) Both the
incidence and the reflection angles for the beamalety The interference with the amplification
occurs if the difference of the optical wAyfor the parallel beams equals the integer muligblthe
used wavelength. That can be formulated as tBeagg law:

A=2PM = A =2dysi@ or d_ /1
n 2sin@

The integer n is the reflection order. An@leat which the amplified beam is observed (equal to
the incidence angle), is called the Bragg anglee Bragg law relates the crystal lattice geometry,
described with the inter-planar spacing,dwith the corresponding Bragg angles, descriptbithe
diffraction pattern geometry. The equation alstigates that for the (hkl) family of parallel plane
and a given wavelength the series of reflected beams is observed caynebpg to the subsequent
integers n Fig. 9.3. The equation independent from n is obtainedtraypsforming the Bragg
equation to the form containing thgqth ratio.

In the diffraction experiment, when the reflecti@amgles are measured and the known
wavelength\ is used, the ratios,@n can be calculated. For the known inter-plapacsg ¢y and
wavelength\, the geometry of the diffraction patte@ror the crystal can be calculated.
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Consider the intensity of beams diffracted by algst X-rays interact with the atom electrons.
The ability of the electron to interact with X-ragan be formulated as the electron scattering power
Since the effect is additive, the power of intei@acttof each atom is a sum over all its electrons.
Therefore the atomic scattering factoisf introduced, which is identical for all atoms afgiven
element and proportional to the atomic numherTthe atomic scattering factgrig given:

fi = fo exp(-Ksirfo/A?) where

fo — atomic scattering factor for a non-oscillatingma

K — temperature factor, depends on the amplitudesoilations around the equilibrium position
A\ — radiation wavelength

0 — incident angle, angle for the observed refletieam

Fig. 9.4 presents a plot of thg lependence on the quotientt¥ia The atomic scattering factor
fo is proportional to the atomic number of the elethen different curves do not intersect. The
decrease in the scattering factor depends expatigriin sird, therefore for high reflection angles
the light atoms (C, H) have a minor contributidhatoms have a large oscillation amplitude or éarg
K, as for molecular fragments of large conformadioftexibility or revealing a disordered in the
crystal lattice, their contribution decreases conmggto atoms of small dynamics in the lattice.eTh
effect of the wavelength is also important. Thamagbility to interact with the radiation is larder
the longer wavelengths. In practice, the mostuesdy used radiation is Cu= 1.54178 A and Mo
A =0.71073 A. For crystals containing only lighdras, the copper radiation is more useful.

Intensity |y of the beam diffracted by the (hkl) plane familf/tbe crystal depends on the
structure factors g, which can be calculated as a sum of contributadradl atoms in the structure:

N
I ~ Fki= Z f, exp 2u(hx; + ky: + 1)

i=1
F structure factor, =/I,

fi atom scattering factor
h,k,l Miller indices of the reflecting plangl
X,¥,z  coordinates of the i-th atom in the unit cell
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Expression for the structure factor indicates fhat (and intensity k) of the diffracted beam
depends on the kind of atom) @nd its position (xyz) or the matter distributionthe crystal lattice.
Geometry of the diffraction pattern described wiitle Bragg law depends on the cell parameters
(dna, &,b,cq1,B,y), which in turn are related to the sizes of atamsg molecules constituting the
crystal lattice and interactions between them. rdloee, the diffraction pattern obtained in the
experiment and interpreted in means @k {Bn} pairs is a basis for the substance identification
the diffraction pattern is characteristic for thgstal of a given compound.

The simplest method for the diffraction experimenthe powder method of Debye-Scherrer-
Hull (DSH). In this method, the monochromatic be@andiffracted by the crystalline powder
sample, containing a large number of randomly ee@small single crystals. The sample is rotated
to make the lattice planes reach éhangle satisfying the Bragg lawif. 9.5. The pattern can be
recorded in the cylindrical camera.

Fig. 9.5 Fig. 9.6

The beams are diffracted with the Bragg anglesrsdalistributed on the side surfaces of the co-

axial diffraction cones with the beam angl2to the incident beam and the cone an@g 4 The
axis of all cones is the incident beam. The meakdistances between the diffraction rings (lines)
allow to calculate the Bragg angles. The powdgratitometers record the diffractograms | )J(

Beams recorded for Bragg angles should be relate¢det (hkl) reflecting planes, what means
the indexing of the pattern lines with hkl. Foatlthe quadratic form has to be used. The adjacent
planes (hkl) run through points H=a/h, K = b/k, Lck and the system origin 00&i¢. 9.6. Lets
draw the OP line perpendicular to the (hkl) plaaed running through the system origin.

For each axis the expression can be formulated d,ce OP/OH = dq/(a/h)

For the orthogonal systems (normal equation obae) co®x + cogdy + cosdz = 1
Combining these equations gives the quadratic form:

U = W& + Kb + PIc?

For the tetragonal system a=b 2d = (HF+Kk3)/a + PPIc?
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For the cubic system a=b=c 1 = (F+K>+ 1?)/&

Summarizing, the Bragg equation relates geometrythef lattice ¢ with the diffraction
geometryBnq. The inter-planar distances depend on the celstemts a,b,c and Miller indices h,k,l
(quadratic form). In turn, cell parameters dependhe size of atoms and molecules.

Indexing is based on the Bragg equation and thdrgtia form. Lets use the simplest form for
the cubic system. The Bragg equation will be usea form independent from the reflection order
d’ =d/n.

M\ = 2chigsSind; dhg/n = d’ = 1/d’ = 2sid/A

1d? = (HF+K%+ 19/ = QI
1Ud?g = (HP+K3+ 19)/a = 4sirfo/?

For all beams (reflections) $ih=2Q/4& =kQ where k=const for the experiment
Sinfei/Q; = \%/4&f = const; QI N

For the beam of the smallésaingle, Q will be the smallest. The diffractiorpesment gives);
and one can find numbers @ving in the constant values of quotients&i®. Some Q values are
forbidden (see below). In such case, differenta® to be assigned to the beam of the smallest angle

Q = 1= hkl =100 or 010 or 001 the same form in the cudystem
Q=2= hkl=110

Q=3=>hkl=111

Q=7= hkl=??? also Q =15, 23, 28, 31...

Q =9= hkl =300 or 221 that is the reflection supeipon!

Knowing the reflection indices, one can analyze dhiféraction pattern symmetry. Besides
periodicity, the crystal lattice reveals the symmetConsider the diffraction from two symmetry
related planes. Lets assume the symmetry is $fEQ] axis. Two planes (hkl) and (-hk-I) are
symmetry related, therefore the plane spacigamd d. are equal. The Bragg law indicates that
the Bragg angles for both plane families are iaexrti

2sim /A= d’hkl = d’—hk—l = 2sir /A

The diffraction pattern will show the symmetry teld to the symmetry of the crystal lattice.
On the other hand, intensityyl of the beam diffracted on (hkl) crystal planesretated to the
structure factors g, that can be calculated as the sum of contribatafrall atoms constituting the
structure. Structure factors can be calculatedHerexample above, using[Q10] symmetry. The
symmetry-equivalent atoms have coordinates xyz-awelz. The structure factors for the symmetry
related planes,k and F.. are expressed as sum of contributions of of at@hased by symmetry:
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Fra = T [exp 2{hx + ky + Iz} + exp 2ri{h(-x) + ky + I(-2)}]
Pt = 1 [exp 20{(-h)x + ky + (-2} + exp 2a{(-h)() + Ky + (D(2)}] = Fra

Both geometry of the diffraction pattern and tharbentensities reveal the symmetry, that is
related to the that of the matter distribution e fcrystal — the lattice symmetry. However, the
formalism of the diffraction description is affedtby the Friedel law. Consider the structure fecto
originated by (hkl) and (-h-k-l) planes, with nosamptions on the crystal symmetry. We use the
Euler theorem for the exponential function with ttmaginary index: expi) = cosx + i sina and the
evenness of the trigonometric functions.

Fr = 2fi exp2ri(hx+ky+1z) = 2fi[cos2rn (hx+ky+lz) + isinZ (hx+ky+|z)]
Fr = 2fi cos2t (hx+ky+|z) + 2fi sin2n (hx+ky+|z) = A + 1 B
Ik ~ Pk Pk = (A +iB) (A -iB) = Ank® + Brii®

Fhu = Zfi exp2ri(-hx-ky-1z) = Zfi[cos2r (-hx-ky-1z) + isinZ (-hx-ky-1z)]
Fhxi = 2 fi cos2t (hx+ky+|z) i i2fi sin2n (hx+ky+|z) = A - i Bhi
Lhat ~ Enkt Fad = (Anki - 1 Bri) (Anki + Bri) = Anii® + Bhid®

Hence Hk = Lhk

The Friedel law indicates that intensities of hkda-h-k-I reflections are identical, and the
diffraction pattern is centrosymmetric (has an nsi@n symmetry), despite the real symmetry of the
crystal lattice. Consequently, the diffractiontpat symmetry corresponds to 32 point groups but
supplemented by the inversion, what limits the idesymmetry to 11 aue diffraction groups:

Point group Laueg diffraction group
1,1 1
2, m, 2/m 2/m
222, mm2, mmm mmm
3,3 3
32,3m,3m 3m
4,4, 4/m 4/m
422, 4mm, 4/mmm42m 4/mmm
6, 6, 6/m 6/m
622, 6mm, 6/mmme 2m 6/mmm
23, m3 m3
432,43m, m3m m3m
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10. Systematic absences. Determination of theesgeoup.

How to determine the space group reflecting thetenadistribution in the crystal,, if the
morphology analysis gives an information about pleent group only, and the symmetry of the
diffraction pattern allows to recognize one out Idf Laue diffraction groups? That can be
accomplished with the use of so callegstematic absencessome classes of reflections have
intensity, and consequently the structure factg Bf zero, independent from the kind and position
xyz of atoms in the structure.

To understand the rules of systematic absencesjdmrnthe expression of the structure factor
for atoms related by a transformation in the spgoeup. To calculate the structure factor,
summation will be performed over only those atoha are related by the analyzed transformation

Lets start with the Bravais translation lattice Ret the atom have a general position with
coordinates xyz. Positions of the equivalent atamthis translation group correspond to the linear
combination of the unit vectorsp,aly and @¢. Therefore, the equivalent atoms have the xyz
coordinates in the adjacent unit cells. Consedyetite structure factor can be calculated as the
contribution of a single atom:

Fr = i expzii(hx+ky+z)

Since the obtained expression depends on the catedi xyz, we cannot define the systematic
absences related to the analyzed transformationere tare no systematic absences for general
position xyz. It has to be noted that this caltatacan give the zero value of the structure fgcto
but that would result from the arithmetic only, a@adhot a systematic effect for any reflection grou
The next example will explain it in more details.

Analyze the Bravais lattice C. It correspondsh®lattice translatiof® centering faces (001).

Coordinates of atoms equivalent in this transforomeare xyz and 1/2+x,1/2+y,z. For all reflections
hkl, the structure factor can be calculated, angingpthe first sum component ahead of the square
bracket:

Fra = fi [exp2ri(hx+ky+z) + expZii(h(1/2+x)+k(1/2+y)+Iz)]
Fr = fi [exp2t (hx+ky+1z) + expzi(hx+ky+lz)expzi(h/2 + k/2)]
Fri = fi expzii(hx+ky+Iz) [1 + expzi(h/2 + k/2)]

Fra = fi expzii(hx+ky+1z) [1 + expri(h+k)]

Fr = fi expzii(hx+ky+1z) [1 + cox (h+k) + i SiT{h+Kk)]

Since h and k are the Miller indices in the playmisol, the imaginary part is zero:
h+k 1 = sim (h+k) =0

- for h+k=2n+1 1+cos(h+k)=0 = F=0
- for h+k=2n 1+cos(h+k)=2 = FR=2fiexpZri(hx+ky+lz) = 2 Ry (P)
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For any reflections hkl, these with the odd sum stk not be observed, since their structure
factors and intensities are zero. However, theotesl reflections will have the structure factofrs o
a value two times larger than those for the hypathgrimitive lattice P. What is a difference
between the discussed P and C lattices? The aliiferis associated with the fractional translation

a+b

>> in the C lattice. That resulted in the exponertiaction with sum h+k in its index and leaded
to the systematic absences independent from tine dsition.

Other Bravais lattices can also be analyzed. Rer lattice, translationg® 2¢ ¢ occur.
Coordinates of the equivalent points are: x,y,2+%/1/2+y,z; 1/2+x,y,1/2+z; x,1/2+y,1/2+z.

Fra = fi [exp2ri(hx+ky+Iz) + expZi(h(3 +x)+k(3 +y)+lz) +

expU(h(3 +x)+ky+(3 +2)) + expai(hx+k(3 +y)+(} +2))]
Fr=fiexp2ti(hx+ky+lz)[1+expzui( 5 +% )+expzui( 5 +5 )+exp2ui( § +4 )]
Frk(F) = F(P)[1+ cos (h+k) + cos (h+l) + cost (k+1)]

- h+k, h+l, k+l = 2n= Fw(F) = 4kw(P)

- h+k=2n+1= R(F) =0 = hor k =2n+1 therefore for any |
[1 + cos (h+k) + coz (h+l) + cos (k+l)] = 1-1+1-1=0

As a result, the F lattice can be recognized byotieerved reflections only with the same parity
of all indices hkl.

For | lattice, the translatiof*2*c relates points X,y,z and 1/2+x,1/2+y,1/2+z.

Fria = fi [exp2ri(hx+ky+|z) + expzi(h(3 +X)+k(3 +y)+I(3 +2)]
Fr=fiexp2ri(hx+ky+z)[1+expzi( 4+ +1)]
Fru (1) = R (P)[1 + cos (h+k+1)]

- htk+l = 2n=> R (1) = 200 (P)
- h+k+l = 2n+1= Ry (|) =0

Summary of his analysis is a table below.

Type of Bravais translation lattice Systematic aloss

none

k+l=2n+1

h+l1=2n+1

h+k=2n+1

h+k=2n+1, h+l=2n+1, k+|=2n+1

—|m{O|m|>|T

h+k+I=2n+1

49

Projekt wspétfinansowany przez Writuropejsk w ramach Europejskiego Funduszu Spotecznego



UNIA EUROPEJSKA
EUROPEJSKI
KAPITAL LUDZKI FUNDUSZ SPOLECZNY

NARODOWA STRATEGIA SPOINOSCI

Projekt pn. Wzmocnienie potencjatu dydaktycznéfddK w Toruniu w dziedzinach matematyczno-przyrodniézyc
realizowany w ramach Poddziatania 4.1.1 Programer@yjnego Kapitat Ludzki

Systematic absences have been caused by the preddnactional translations in the centered
Bravais groups. That suggests the analogous pldgsif detecting the translation symmetry
elements as components of the space groups.

Lets calculate the structure factor for atoms eeldiy the L|ly symmetry axis. Coordinates of
the symmetry-equivalent atoms are x,y,z and -X,y,-z

Fra = fi [exp2ui(hx+ky+1z) + expzi(h(-x)+ky+l(-z))]
There are no systematic absences since theregspmnession independent from the coordinates.

Consider the screw axis.2Since axes are directional elements — lets ehtesaxis g|y with
the translationy . Coordinates of the symmetry-related atoms zx,yx,1/2+y,-z. Sum over these

atoms gives:

Fra = fi [exp2ri(hx+ky+z) + expZi(h(-x)+k(1/2+y)+I(-2))]
Fra = fi exp2ui(hx+ky+lz)[1 + expZi(-2hx+% -21z)]

For any xyz coordinates, one has to consider rigfles OkO (axial) for which the components -
2hx and -21z in the index equal zero. Notice thatpresence of these components results from the
direction of the screw axis:

Fhkl = f expzui(hx+ky+Iz)[1 + coski]
- Fhkl=0 when cosk=-1 = k=2n+1
- FhklIZ0 when cosk=1 = k=2n

If we change the axis for [’ with the translatior§ , calculations will be performed for a pair of
the related atoms x,y,z 1/2+x,-y,-z::

Fra = fi [exp2ri(hx+ky+1z) + expZi(h(1/2+x)+k(-y)+(-2))]
Fr = fi exp2ui(hx+ky+Iz)[1 + expZi( 4 -2ky-21z)]

Equation will be independent from coordinates dotlyh0O0 reflections:
Fra = fi expzri(hx+ky+lz)[1 + cos k]

- Fhkl =0 when cosh= -1 = h=2n+1
- FhklZ0 when coslhi=1 = h=2n

Again, type of reflections affected by the abserise®lated to the direction of the screw axis,
while the systematic absences condition is derfkea the fractional translation.
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Analyze the action of the glide planes. Similardtation axes, normal mirror planes do not

have the coupled translation. Consider the glidme c perpendicular to Y, which relates points
X,y,z and x,-y,1/2+z :

Fra = fi [exp2ui(hx+ky+1z) + expzi(hx)+k(-y)+|(1/2+2))]
Fra = fi exp2ui(hx+ky+1z)[1 + expZi(-2ky+ )]

For any x,y,z and reflections hOl (zone of Y xis
Frn= fi expzui(hx+ky+lz)[1 + cosl]

-Fw =0 when cogl=-1 = |=2n+1
- I:hkl Z0 whencogsl=1 = I=2n

For the plane lnlx, translation is%¢. Coordinates of two symmetry-equivalent poines g,z
and -x,1/2+y,1/2+z. Condition for the systemabsences:

Fri = T [exp2ui(hx+ky+1z) + expzi(h(-x)+k(1/2+y)+|(1/2+2))]
Fra = fi exp2ui(hx+ky+z)[1 + expZi(-2hx+% +1)]

Hence for any x,y,z and for reflections Okl (zaieX axis):
Fr = fi exp2ti(hx+ky+Iz)[1 + cost (k+l)]

- Fiu = 0 when cas (k+) = -1 = k+l=2n+1
- Fua Z0 when cos (k+l) =1 = k+l=2n

Summarizing, the selected systematic absencesdetat translation symmetry elements are
tabulated below:

Orientation Symmetry element Systematic absencep
any m, 2,3,4,6 no
[100] 2 h00; h=2n+1
[010] 2 0kO; k=2n+1
[001] 2 00l; I=2n+1
(100) b Okl; k=2n+1
C Okl; I=2n+1
n Okl; k+1=2n+1
(010) a hOl; h=2n+1
C hol; I=2n+1
n hOl; h+l=2n+1
(001) a hkO; h=2n+1
b hkO; k=2n+1
n hkO; h+k=2n+1
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Systematic absences contain the information onlthertranslation symmetry elements and the
translation Bravais lattices. However, coupledhvthie rules of the symmetry combination, they
frequently allow to overcome the limitation supepwsed by the Friedel law and determine the true
space group.

For example, compound (1R,2R).s826N20, crystallizes in the orthorhombic system and the
systematic absences for groups of reflections @@efor h=2n+1, 0kO k=2n+1, 00l I=2n+1, with the
lack of other absences. If the space group woale I8 planes of symmetry, they would intersect
along the axis directions, and therefore wouldHheedlide planes. Therefore, the analyzed crystal
reveals only P2,2; symmetry and consists of the optically pure conmatbu

Another crystal from the monoclinic system reveatéy absences for reflections 0kO k=2n+1

and hOl 1=2n+1, describing the rotation axis patatib Y and the plane perpendicular to it.
Conclusion — the space group is centrosymmetritcP2
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11. Single crystal methods. Laue equation.

The powder method DSH allows to investigate theyqgktalline samples. Result of the
experiment is the diffraction pattern giving theeesimensional data with the beams diffracted on all
the lattice planes. Such pattern results from rdr@dom orientation of the large number of
microcrystals. Only use of the monochromatic beallows the interpretation of the obtained
results.

Different possibilities result from the use of agle crystal sample. Knowledge on the crystal
orientation allows the interpretation of the difftian pattern, including the obtained 3-dimensional
data leading to the determination of the pattemragtry, the relative orientation of the symmetry
elements in the Laue diffraction group, the reftattindexing, easy determination of the space
group and also the unit cell parameters.

The Laue theory applied for the single crystal rodghis based on the diffraction formalism.
The basic assumptions are as follows: the motisréésms are located in the nodes of the lattice;
these are the point atoms with all electrons |latatethe atom position — in the grid point of the
lattice; the atom ability to diffract is describad the atomic scattering facterpfroportional to its
atomic number Z The X-ray beam causes the electron oscillationksthe emission of the radiation
of the same frequency/Q\) as the incident beam; the diffracted beam is teohias the spherical
wave; the diffracted beam has the same amplitudbeasncident beam; amplitude depends on f
(Z); the spherical waves interfere and are amplifredhe directions of the observed diffracted
beams.

Consider the radiation beam of thevavelength directed to the one-dimensional crylst#ice
of the constant a (the grid line in the crystatida) with the incidence angle af and the reflection
anglea (Fig. 11.10.

Fig. 11.1

Amplification will occur if the difference of theptical way AC-BD will be equal to the integer
multiple of the wavelength. Hence:

AC-BD = a(cost - CoS1p) = hA where h1C
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The above is theéaue equation Its consequence is that the deflection of tligadited beam
from the incident beam direction, expressed withdifference is (cas- cost,), is proportional to
the interference order h, proportional to the wamgth A of the incident beam, and inversely
proportional to the lattice constant a. The anmdifreflections will be positioned on the side auoé
of the cone co-axial with the grid line with theneoangle equal to the reflection anglérig. 11.7).

For the three-dimensional lattices, the system lodBe equations has to be satisfieay(11.2

a(cost - co) =
b(co$ - coP,) = kA
c(cog - cogy) = IA

Fig. 11.3 Fig. 11.4

There is a remote probability that the radiationh&f wavelengtia will satisfy the system of
3 equations for a fixed crystal orientation. Torgase this probability, the experiment is perfame
with the polychromatic radiation or with the chamgjcrystal orientation.

There are several methods of the single crystatstigations. Lets start with the Laue
method. The polychromatic beam is directed towdh#s motionless single crystaFi§. 11.3.
Usually, the flat detector is positioned behind thgstal. The observed reflections originated from
the planes belonging to the same zone are locait¢deosame zonal curve (circle, ellipse, parabola,
hyperbola). Position of the zone axis Z can bem@ned by analysis of the zonal curves. If the
zonal curves of X,Y,Z system axes will be identfi¢he cell parameters can be determined. The
Laue method allows to simultaneously record mangmnize diffracted by the crystal. The clear
advantage of the method is also the ability to meitee the symmetry. If the incident beam runs
along the symmetry element, the zonal curves mddlom the symmetry-related zones will give
the symmetric diffraction patteririg. 11.4. One has to remember about the limitations iregdsy
the Friedel law — the diffraction pattern will alygabe centrosymmetric. The example below
illustrates this case.

The symmetry of the diffraction pattern for the roolnic crystal is analyzed. Possible point

groups of symmetry are 2, m and 2/m. In group@,imcident beam along the 2-fold axis will result
in the 2-fold symmetry of the diffraction pattetnyt the incident beam perpendicular to the axis wil
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result in the m symmetry. In group m, the incideeam parallel to the mirror plane will give such
symmetry of the diffraction pattern, while the beparpendicular to the mirror plane will result in
the 2-fold symmetry of the pattern. Finally, flet2/m group there will be a combination of both
cases analyzed above. Such analysis leads topE3 tyf symmetry of the diffraction pattern
recorded with the Laue methadeéiq. 11.5.

° o L L
Qo ° ° ° P .O P
[ ] ' ®
™ L] . °
. | ® ° ® . @
o () o
1 2 3 4 6
o0 oo se oo, 0.0%e
[ ° .. .. ..- ..
* ® o, o‘ o° ..
° ® @ 9 o o 0% +°0
( X J o0 00
m 2mm 3m Ltmm 6 mm
Fig. 11.5

Another method is called the rotation method. Simgle crystal is rotated around the chosen
grid line. That requires the precise crystal algmt. In this method, the monochromatic incident
beam is directed with the incidence angle of @wards the grid line being the axis of the crysta
rotation in cameraFig. 11.9. In this method the detector is on the innefagg of the cylindrical
camera co-axial with the axis of crystal rotatioReflections from the grid line are distributed o
the side surfaces of the co-axial diffraction cofieg. 11.7), and after the film (detector) is unrolled,
their traces are visible as the parallel linesechlayers.

% S=42
a) b) ‘ R
l S=+1
R .
h=2 " R W, | R Wa
h=1 + W, & T s=0
g - o Wb S
S h=0 —— —- O—+——+— + Ty oL
] _ Ry R |[M
>< h:j o s2-1
>< h=2 +— 1 £ R’
s5=-2
F d3
Fig. 11.6 Fig. 11.7

The observed layers correspond to different diffoexcorders h=0,1,2 and so on. The incident
beam, crystal and the transient beam are positionélde plane of the zero layer h=0. The layer
distribution is symmetrical relative to the zeroyda (Fig. 11.7, what is the consequence of
satisfying the Laue equation for identical diffiact angles above and below the plane of the zero
layer. In the rotation method both wavelength #relcamera radius R are known. Therefore, the

55

Projekt wspétfinansowany przez Writuropejsk w ramach Europejskiego Funduszu Spotecznego



UNIA EUROPEJSKA
KAPITAL LUDZKI EUROPEJSKI

NARODOWA STRATEGIA SPOJINOSCI FUNDUSZ SPOLECZNY

Projekt pn. Wzmocnienie potencjatu dydaktycznéfddK w Toruniu w dziedzinach matematyczno-przyrodniézyc
realizowany w ramach Poddziatania 4.1.1 Programer@yjnego Kapitat Ludzki

lattice constant can be calculated with high prenis Notice, that the first order layers on battes
of the zero layer (h=1 and h=-1) have the same aogé — so called layer angle The sum of the
layer angle and the diffraction angle i 90 he distance between layers of the same ordedh-h
is 2W.

v+a=90F hencear =90 —v cosa = sinv
In the rotation method, = 9. For the layer of the h order, the Laue equation:

a(cost - coy) =
acost = ha
1

a=M/coxt=h\/sinv=h\
2y

sin

Since sifiv + codv=1:

a=M.l+cg2y  where ctg=2R/2W

The rotation method allows to precisely calcul&te attice constant, but also the length of any
vector of the unit translation for the adjacent emgositioned on the rotation axis (the grid line).
Determination of all unit cell parameterg b, and ¢ requires the precise alignment of the crystal,
with the coordinate axes positioned parallel to tb&tion axis. Usually, the rotation method is
combined with the Laue method, since the latteegithe angular relations between different zone
axes Fig. 11.3. Identification of directions of the coordinad®es can also be done based on the
crystal morphology combined with the rules for teice of the system axes XYZ relative to the
symmetry elements in an investigated crystal system

q) b)

e oo L) . s ol e o .

. e oo o . - a -
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The rotation method can also give the informationtbe symmetry of the incident beam
direction or the crystal rotation axiBig. 11.8. If the incident beam is directed to a crystaving
the mirror plane perpendicular to the axis of iotatthe h and —h layers will reveal the identical
distribution and intensities of reflections, ance tdiffraction pattern will have the top-bottom
symmetry relative to the zero laydtig. 11.89. If the mirror plane parallel to the axis ofatibn
will pass through the direction of the incident imedhe right-left symmetry of the diffracted patter
will be seenFig. 11.81. If both these cases occur simultaneously, ifieadtion pattern will reveal
the mm2 symmetryHig. 11.89. For the incident beam parallel to the latticéol@ axis, the
diffraction pattern will reveal such symmetryig. 11.89. If, however, the incident beam will be
directed in any other direction, the diffractiorttpan will have no symmetry~{g. 11.88.

Lets summarize the methods of crystal investigatieading to the determination of the matter
structure.

1. The Laue diffraction group (lattice symmetryflahe crystal system can be determined with the
Laue or rotation methods (single crystal methods).

2. The unit cell geometry a,bygf},y,V can be determined with the rotation, Laue or Obivder)
methods

3.  Number of molecules in the unit cell can be walted based on the crystal density measurement

d=m/V, =1.6604 ZM,/V, Z=0.6023dy/ M,

4. Indexing of the diffraction pattern in all metiso(rotation, Laue, DSH)

5. Bravais lattice from the systematic absencdsbfeflections. The observed reflections:
P: all A k+l=2n  B: h+l=2n C: h+k=2n F:kth+l, k+|=2n . h+k+l=2n

6. The space group from the systematic absencest tHe screw axes absences occur for
reflections h00 (X) OkO (Y) 00l (2), for the glig#anes perpendicular to X,Y and Z absences for
the reflection classes Okl, hOl and hkO

7. Amplification of the diffracted beams occurshé equations are satisfied:
Bragg . = 20 Sind
Laue a (cos- cos,) = he

8. Intensity of the diffracted beam for the (hkiupes is expressed:

lha ~ R = z fi exp Zti(hxi + kyi + |Zi)

9. Each atom diffracts the radiation proportiomaits atomic number. The atom scattering factor
fi = f, exp(-Ksirfo/n?)

10. Intensity of the diffracted beam is affected fgmtarization p, detection time (the experiment
geometry) L and the radiation absorption A:

, 1tcos(20)

| =LpA F*=9
P 2

1 2
—JexpuldVeF
VI p 1
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12. Theory of the structure factors. The phasklpm.

Three-dimensional periodic crystal lattice is dédsst with the use of the basis of the unit
vectorsa, b andc, coupled with the selected crystal system. Howewespace the infinite number
of such bases can be defined and one basis caartsformed into another. In particular, for basis
a, b andc in the real space, one can construct the basiedirsa*, b* andc* defining the
reciprocal space. Vectors of the reciprocal sgarebe defined in a following way: for (100), (010)
and (001) planes the perpendicular lines are aactsil from the point chosen as the system origin,
the sectors 1/do is selected ag* and analogous sectors for other axes. The (fdhep( real space)
has the corresponding hkl point in the recipropalce defined by the vectbr= ha* + kb* + Ic*.

Function Gh) is a Fourier transform of functionx3( when the equation is satisfied:

G(h) = TIge)] = | 9(x)-exp(Zih-x)dVx
VX
Vectorx is defined in the real spaceafb andc vectors, while vecton in the reciprocal space
a*, b* andc*. Function fK) is derived from the inverse Fourier transfornthe Gf) function:

g(x) = THG(N)] = k| G(h)-exp(-2h-x)dVy*

Several important theorems concern the transfoffmansform of the sum of functions is a sum
of their transforms. Transform of the function eolution is the product of their transforms:

T[g(x) ® q()] = G(h) - Q(h)
Transform of the inverse function is G)(= T [g*(-x)]. It can be shown that:
PK) = j G(h)-G*(h)-exp(-2tih-x)dVy* = j |Gh)[*-exp(-2tih-x)dVy*
In the unit cell, the electron density distributican be described as a sum of distributions for

atoms a(x) =xa(x-xj). Transform of the sum of functions is a sum ledit transforms. If the
transform T[&Xx-xi)] = fi(h), then the transform of function a(x) can betten as:

T[a(x)] = =fi(h)- exp(2tih-x;)

In crystallography, function gj is the function of the electron density distribatp(x), while
function G) is the structure factor k). Hence:

F(h) = [ p(x)-exp(2tihx)dVy

For a discrete distribution of the point atoms:
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F(h) = =f;-exp(2tihx)

The inverse Fourier transform allows to calculake tfunction of the electron density
distributionp(x)-in a point of coordinates.

p(x) = V> F(h)-exp(-2tihx)

The Fourier transform of the structure factors vafoto calculate the electron density

distribution in the crystap(xy2=V *=F(hkl)-exp[-2ri(hx+ky+l2)]. The direct use of this formula is
impossible. The structure factors are complex eswvith the amplitude |F(hkl)| and phagékl):
F(hkl)=|F(hkl)|-explp(hkl)]. The diffraction experiment provides onlhet information on the
reflection intensity I(hkl), which is proportionab the square of the amplitude |F(kl)| The
amplitude can easily be calculated as a square abtite intensity measured in the diffraction

experiment |F(hkl)|5I(hkl) , but there is no information on the phase. b phase, what has a
decisive effect on the quality of the obtained tiot of the electron density distribution.

Thephase problemindicated above is shown &ig. 12.1 The structure factor {gexp ip can
be expressed as the vector sum of the real andnarggarts:

Frki = |Flexp i = |Fal(cosp + ising) = Anx + iBhii

IF|

tp\ B

Ahkl

Bhkl

Fig. 12.1

Intensity measured in the diffraction experimenihis~ |Fuf© = FF* = A+B? The unknown
phase can be calculated from the known positioragarfis in the structure:

Frki = [Pkl (Cosp + iSing) = Ank + iBhki
tgenki = Bkt / Anki

Then the experimental &= |Fw| exp i
or model-based F Zf; exp Zii(hx; + ky; + 1z))

The function of the electron density distributidrifee point of coordinates xyz:
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Pxyz = VS Fria exp -2Zii(hx+ky+z)

hkl

or if the kind and position;/,z of atoms in the cell are known:

Pxyz = V'lz [ > fi exp Zri(hxi+Kyi+z;)] exp-2ui(hx+ky+Iz)

hkl i

The essence of the phase problem is that the plex®ssary for determination of the atomic
positions can be calculated from the known atoro&itpns!

It has to be noted, that in many cases positiogoafie atoms in the structure can be deduced
from the comparison of the number of symmetry-eglent points in a given space group (Iprs) and
the number of molecules in the unit cell Z, deterdi from the experimental crystal density d.
Density can be expressed as a quotient of masgahmehe of the unit cell:

d =md/Vy=1.6604 ZMcz / VY
Z =0.6023 d¥/ Mcz

Number of the symmetry-equivalent points is calmdaor each space group as the product of
numbers of points related by the Bravais transtagooup and number of points related by the
symmetries in the group. The reminder: number hid symmetry-equivalent points for the
translation symmetry is identical with that for then-translation symmetry.

If Z>lprs, the asymmetric part of the structure (A ontains more than 1 molecule. If Z=lprs,
the asymmetric unit contains one molecule in a gérposition. In both cases, molecules have only
C, symmetry and nothing can be deduced about thecuelgosition. For Z<Iprs, fraction of the
molecule equal to the quotient Z/lprs is in themasetric unit, and the molecule has an internal
symmetry. Both translation and non-translation syatries exist in the space groups, but only the
latter (rotation axes, mirror planes, inversionteencan reflect the molecule symmetry. Therefore,
if the molecule contains an atom that has to bariamnt in a certain symmetry, its coordinates are
strictly defined. The examples below will expléiis deduction method.

Complex [Pt(NH).Cl;] crystallizes in the orthorhombic space group Pbceherefore, the
whole list of symmetries include three glide plartesee screw axes 2nd the inversion. Number
of symmetry-equivalent points in this group Ipr8= The density measurement indicated that 8
molecules are in the unit cell. Thus the asymmeinit contains 8/8 = 1 molecule, and that means
the molecule has no internal symmetry. If the maeas density indicate Z=4, then the asymmetric
unit contains 4/8 or half of the molecule. Theesthalf can be obtained by using the symmetry
relating 2 symmetry-equivalent points. All symmesriin the analyzed space group (glide planes,
screw axes, inversion center) satisfy that requaér@m However, only the non-translation symmetry,
an inversion, can describe the symmetry of the stigated complex molecule. Since only one
central ion is in the molecule, it has to be theamant point of the inversion, so its coordinades
identical to those of the inversion center. Theskmow the ion position Pt(0,0,0).
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Crystal of [Pt(NH).Cl;] was obtained in the space group,/B2vith Z=2. Two translation
symmetry elements exist in this group — the screw and the glide plane, and the non-translation
inversion. Only the non-translation symmetry ceftect the molecule symmetry. Therefore, in this
example, the molecule must posses the inversiom&tm, and the only Pt ion must be positioned
on the inversion center. The system origin hasiocide with one of the common invariant points
of the group symmetries. If the group is centroswyatric, the system origin coincides with the
inversion center. Therefore, the coordinates abRare 0,0,0.

The same complex [Pt(NJ3Cl;] crystallizes in the space group Pnn2. It is augrfrom the
orthorhombic system, so tree positions in the m#gonal symbol characterize the symmetry of
X,Y,Z system axes. Thus the 2-fold axis directi®Z. There are 4 symmetry-equivalent positions
in that group. The measured crystal density inde@=2, what corresponds to 1/2 molecule in the
asymmetric unit and consequently the $ymmetry of the molecule. The 2-fold axis is & aie
points {00z}, with coordinate z having any valu€he analyzed group is polar, and any z value can
be assigned for one atom, defining in this waypdsition relative to the system origin or assigning
the origin position in space! That allows to cédte the phase and the electron density distributio

In similar cases, deduction of atom coordinatesnadito calculate the approximate value of the
phase angle and subsequently the function of #areh density distribution. Such deduction of the
structure is one of the methods for solving thespharoblem.

For the deduced or known position of one or sewa@hs, the structure factor can be calculated
according to the equation:

F= Zf. exp 2ti(hXi + k}ﬁ + |Zi) = Anu + 1Bhi

Phases calculated for all reflections are only epipnate, since are based on the contribution of
only few atoms. However, if this contribution igyrsficant (for heavy atoms; fis large), the
obtained values are good estimations of the truesgdh In such case, maxima on the electron
density distribution reveal positions of other asprand their contribution to the calculated strrestu
factor and the phase is accounted for in the futhiulation. Thus, in the subsequent iteratiafis,
non-hydrogen atoms can be located, correcting dl®ilated phases for all reflections. Location of
hydrogen atoms is performed after refining thecitme with the least-squares method fitting the
non-hydrogen atom coordinates and their oscillatiomplitudes to the experimental data (intensities
or structure factors).
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13. Solving the phase problem. The Pattersonadeth

The nature of the phase problem is that the diffvacexperiment gives only the intensitigg |
of the diffracted beams. They can be converteal tim structure factor amplitudesF However,
these experimental data do not enable the caloulafithe inverse Fourier transform

Pxyz = V'S Fra exp -2i(hx+ky+lz)

hkl

since we do not know the phase necessary for ediieglF = || exp ip. The phase can be
calculated from the known atomic positiong/ixz in the cell and their atomic scattering factor f

Pxyz = V'lz [ > fi exp Zri(hxi+Kyi+lz;)] exp-2ui(hx+ky+lz) and

hkl i

t9enki = Bkt / Anki

Importance of phase for obtaining the proper fuorcthf the matter distribution is illustrated on
Fig. 13.1 Pictures of two crystallographers, Jerome Karld Herbert Hauptmann, the Nobel prize
laureates, have been converted into sets of steutdators F (color saturation) and phases. Then t
distribution maps have been calculated, or pictunese been re-calculated for the proper
combination of phases and amplitudes, giving theect images of both laureates. The use of F
from the Karle picture combined with phases frone thicture of Hauptmann resulted in the
deformed picture of Hauptmann, and the opposite booation — the picture of Karle. That
experiment reveals that the phase value is dedsivine quality of the calculated map of the nmatte
distribution!

Besides deduction of the structure ( practicallpassible for proteins or nucleic acids!) there
are several formally elegant methods of the phasiglgm solution.
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The Patterson method is based on the inverse Fdraresformation of the reflection intensities
measured in the experimematterson function B. Previously, the experimental data have to be
corrected for the geometric and physical factofecéihg the measured intensity and accounted for
in the Lorentz L, polarization p and absorptiondrections.

| = LpA |Ff = LpA FF*
Referring to the introduction, the transform vafuehe uvw point can be expressed as:

Puvw = V'S FF* exp-Zii(hu+kv+iw)
hkl

The transform of the convolution of functions eguéhe product of transforms of these
functions. Both F and F* are Fourier transformshaf function of the matter distribution. Thus the
above expression corresponds to the convolutiaghefunction of the electron density distribution
pxyz and the distribution function shifted by a vedtorw]:

Puvw :.[ Pxyz @ Px-u,y-v,z-w dv

The value of the Patterson function at the uvw pisirproportional tQyy; ® pyxuyvzw If the
uvw vector corresponds to the inter-atomic vecteiwleen atoms of a large atomic number, the
electron density associated with these atoms is large and therBattéunction R, is also large.

If uvw is not an inter-atomic vector, then in eith{gyz) point, (x-u,y-v,z-w) or in both density is
close to zero, and the Patterson function valseniall or zeroFig. 13.2andFig. 13.3.

ﬂ. r

p(x-u) O(x-u) B

a a
\ | /e | /e 5

Fig. 13.2 Fig. 13.3 Fig. 13.4

If uvw are the components of an inter-atomic vedtoen Puvw ~ Z(at19 Z(at2) or the product
of two atomic numbers, and the components are,-MeXx v=y,-y; W=2%-z; (Fig. 13.4) For
bromobenzene, the Patterson peaks correspondwectors Br-Br, Br-C and C-C are proportional
to 1225, 210 and 36, respectively. Thereforey aftdculation of the Patterson function, it woulkel b
easy to identify the peaks corresponding to th&Bvectors. It should be noted, that for the Nraato
structure, the N(N-1) Patterson peaks can be fountkrpretation is even more complicated, since
the Patterson function is centrosymmetric, andaiostvectors 1-2 and 2-1.
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The significant simplification of the interpretatias offered by so calletHarker sections
defined as vectors between atoms related by syrmesétra space group. After identification of the
group based on the symmetry of the diffractiongrateind systematic absences, the Harker sections
can be defined. For example, in the C2/c spacepgrihe Harker sections will be associated with
the translation group C, the inversion, 2-fold axigl the glide plane c. In this group, the section
associated with the C centering corresponds tactorv&2%20, the one related to the inversion center
is 2x,2y,2z Fig. 13.9), it is 2x,0,2z for the 2-fold axis [010] and 0,2yfor the glide plane c.

The question raises, when the elegant Pattersohoshatan be used for solving the phase
problem. The obvious answer is - for structurethwatoms heavier than the other. How heavy is
heavy? That is described by the Sim r&fneavy/ ZZ%gn ~0.5. However, even for the ratio value
of 0.1 the solution might be possible. This metlad be used efficiently for solving the structure
of organic compounds containing sulfur atoms owteza Presence of the bromine atom practically
guaranties that the determined position of Br wasult in phases and electron density maps
revealing the whole molecule or its recognizabégfnent. On the other hand, the Patterson method
cannot be used for normal organic compounds, wachot have atoms significantly heavier from
the other — it is difficult to distinguish betweklarker sections O-O (~64), O-C (~48) and C-C (~36)
on the Patterson function with N(N-1) peaks.

It has to be emphasized, that the Patterson mesh@tiatively resistant to the systematic errors
affecting the experiment. The important part isgit the true values of fApy correcting the
intensities with the Lorentz, polarization and apsion factors. Also, necessity of using the Harke
section requires the determination of the corrpate group.

Use of Harker sections is simple and gives thermétion on heavy atom positions. Presence
of the transformations in the space group canltasconfirmed. Examples below illustrate that.

Crystal of UF reveals the P-1 symmetry, a=b=c=100&p=y=90. The inter-atomic peaks U-U
will be proportional to 92= 8464 U-F ~ 92 x 9=828 F-F <9 81. Positions of the symmetry
related atoms are xyz and —x-y-z. In theg@Fucture, the largest Patterson peaks corresfmond
vectors U-U: P(U-U) = P(uvw) = P(2x, 2y, 2z). Ayss of lower peaks frequently enables the
location of light atoms, giving the lower peaks:

P u@x) v(ay) w(Az)

850 0.10 0.34 0.02 U-U: U(x=0.05 y=0.17 z=0.01)
80 0.23 0.17 0.01 U-F: F1(0.18,0,0) U-F1A.8
80 0.05 0.35 0.01 U-F: F2(0,0.18,0) U-F2 A8
10 0.18 0.18 0.00 F1-F2: F2-F1 2.54 A

Crystal of Uk has the PgZc symmetry, a=b=c=10 Ag=B=y=90. The symmetry-equivalent
positions are: (1) x,y,z; (2)(C) -x,-y,-z; (3)(2x, 0.5+y, 0.5-z; (4)(c) x, 0.5-y, 0.5+z. TheaHer
sections for the screw axis allow to determinexhend z coordinates, those for the ¢ glide plane
give only the y coordinate. How to match them? Ppheper localization gives the 2x,2y,2z section
related to the inversion, what should confirm tberect solution.
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2, P(3-1), P(2-4) 2x, 1/2, 1/2-2z

c P(4-1) 0, 1/2-2y, 1/2

C P(2-1) 2X, 2y, 2z

P u@x) v(ay) w(Az)

850 0.10 0.50 0.20 U-U {p U(x=0.05 y z=0.15)
850 0.00 0.10 0.50 U-U(c): U(x y=0.20 2)
850 0.10 0.40 0.30 U-U (C): u(0.05, 0.20, 0.15)

The Harker sections in the 2 group unequivocally locate the U atom, but agble sections
have to be combined, and the results have to eenaity consistent. One comment is necessary —
position of the symmetry element in the cell is moportant, what matters is the distance between
atoms and the symmetry element giving the sectidimerefore, calculation of the positions of
symmetry-related atoms for a given symmetry capéxéormed as a product of the matrix operator
and the matrix describing the atom position xyz.

The non-translation symmetry elements also giveHhger sections, so their presence in the
space group can be verified. This information as available from the analysis of the systematic
absences, because they occur only for transfornsatiesociated with the fractional translations.

The highest Patterson peak will correspond to #re xector of translation between all atoms

P(000)=(2)? (heavy and light). Identical peaks result frore Bravais translation lattices, what
enables an identification of the cell type from Bwirier transform of &

P translations a,b,c  peaks uvw: 1,0,0 0,1,010,0,
A Le 0,1/2,1/2

B a2 1/2, 0, 1/2

C 2 1/2,1/2,0

F e arc atb 0, 1/2, 1/2;1/2, 0, 1/2; 0, 1/2, 1/2

I aibie 1/2,1/2, 1/2

The calculated Patterson functionuP(s the inverse transform of experimental reflecti
intensities measured in the diffraction experimentse of the Harker sections enables the
determination of the heaviest atoms positionsmbst cases we do not get the complete structural
information, or coordinates of all atoms. The dieesraises if such method is useful for solving th
phase problem. Contribution of each atom into $kreicture factor F depends on its atomic
scattering factor, or its atomic number Z. Therefan the structure containing the heavy atom,
contribution of this atom is the largest. Locatafrthis atom with the Patterson method enables the
calculation of phase values, which are good appmatibns of the true phases. Use of these phases
for calculation of the matter distribution functi@iows to locate other atoms, subsequent phase
improvement and to locate all atoms in the asymmetnit of the structure in the following
iterations. It has to be emphasized that spe@shnts of the Patterson method (MIR, MAD) are
best methods used to solve the phase problem hyrditein crystallography.
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14. Solving the phase problem. Direct methods.

What can be done, if the structure cannot be debl(reguirement Z<Iprs is not satisfied), or the
structure does not contain atoms significantly exafrom the other (what disables the use of the
Patterson method)? For structures composed oalgglight’ atoms, thedirect methods are used.

In 1985 Jerome Karle and Herbert Hauptmann havetiwmNobel prize in medicine for derivation
of direct methods. These methods are based orst#iistical relations between values of the
normalized structure factors E,. The first step is the scaling of reflections a®edermination of
the overall temperature factor by the Wilson methtids necessary to know the scale factor and the
overall temperature factor B for all atoms to obtaormalized E from the structure factors F.

Fe=t|F| = LlpA is calculated from the experimental data |

Fre = t E fio exp2i(hx+ky+lz) exp(-Bsind?/A?)]|
where f, — atom scattering factor for the motionless atom

Assuming that the atomic oscillations are sphef(isatropic) and have identical amplitudes (the
temperature factor;B- B), the equation is simplified:

Fre = t eXp(-B si®?/A?) | fio exp2ri(hx+ky+1z)| = t exp(-B sif?/A?) |F]|
IFf = P o1/ £ exp[-2B sift6 / \?]

Assuming s = siWA and for average values of F ang,Ehe Wilson equation is derived:
In £ - 2B< = In K(s)

In practice, the ranges of s=8IN are chosen, for which the average vals®s>> and
experimental <B& = |/ LpA and f = f, exp(-Bsirf6/A?) are calculated. Then, the plot of InK as a
function of $ is prepared and approximated with the straiglet @ifig. 14.1. The scale factor (In t2)
is calculated from the line equation fér=s0. The line slope gives the value of -2B.

In K(s) ,
Int2=315

3,0

251

2 '0 1 | 1 |
0 03 0,2 03 04 s?2 [

Fig. 14.1
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After calculating the scale factor t and the averaglue of the temperature factor B for all
atoms in the structure, the normalization of theictire factors is performed according to the
equation, in which the numerator contains the olethisquared structure factor and the denominator
contains the sum of the atomic scattering fact@ksg into account B and the factor accounting for
changes in the intensities related to the systemraaences.

E?h = |Fuaf’ / Zf% €

Average value of the squared normalized structamofs E, is <E> = 1. Analysis for
different structures revealed, that distributiontleé normalized structure factors E for structures
crystallizing in the centrosymmetric groups diffesgnificantly from that describing the non-
centrosymmetric groups (Table below). In particukhe average valugE®1> in most cases
enables to decide if the structure possess thersiove center, since for the centrosymmetric
structures the value 0.968 is significantly larggan that of 0.736 found for the non-
centrosymmetric structures. Table below includesdhta for two structures. The structural research
revealed, that complex cudmtp was in fact the csgimmetric dimer [CiCls(dmtp)]. Compound
be2 is the optically pure terpene derivative witketchiral centers in the molecule. Thereforé&)ef
normalization process is carefully performed, ttaistical analysis of the E distribution enables t
overcome the limitations imposed by the Friedel.law

Centro Non-centro cudmtp be2
<E*> 1.0 1.0 0.806 0.870
<E> 0.798 0.886

<E%-1> 0.968 0.736 0.950 0.792
Amount of |E|> 1.0 31.7% 36.8 315 335
Amount of |E|> 2.0 4.6 1.8 5.1 2.9
Amount of |E|> 3.0 0.3 0.01 0.5 0.1

Centro Non-centro

Lets go back to the phase problem. For Fourieistcams of the electron density G(h), relation
in the reciprocal space exists G(hJG{h)G(h-h’)dV*. The theoretical basis of the ditenethods
is the Sayre equation, in which the integral idaeg@d by a sum over all h’ indices (reflections).

E(h) = TS E(h)E(h-h")

For the centrosymmetric structures, the solutiorelatively straightforward. It can be shown
that for such structures the phase can have omywalues - : 0 ot. That leads to the equation:

E(h) = |E(h)| cos = |E(H)| s(h) where s(h) is +1 or -1

The Sayre equation for the large values of the abmed structure factors E and a triplet of
reflections with indices h, h’ and h-h’ leads te B3 relationship:

s(h) = s(h)s(h-h"),
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The special case of the above is Merelationship, when = 2h’ : s(h) = s(h’)s(h’). $hi
relationship indicates that despite the phaseftdateon h’, the phase of reflection h is 0.

For the N-atom structure, probability of the cotnelsase assignment from therelationship is:
p = 1/2 + 1/2 tgh [LN* | E()E(RE(H)] ]

Probability increases for reflections with largeng( E(h), E(hs) values, decreases for the large
N. That indicates, that direct methods can be usedelatively small structures, but not for
proteins. However, for proteins two diffractionpeximents can be performed — for the native
protein and for the protein derivatized with theawe ions. If no changes of the protein
conformation, the unit cell size and the latticemayetry occur, the difference between
corresponding structure factors F(hkl), resultingnf the presence of the heavy atoms, can be
calculated. Normalization of these differentialsture factors enables the phase determination and
localization of the heavy ions.

For the non-centrosymmetric structures, there idimdt for the phase value. The tangent
formula of Karle-Hauptmann is used:

5 |E(h)E(h-h)sinfa(h) +a(h-h)]

9a) = S Eh)Eh-h)cosir(h) + a(h=h)]

This method of the reflection phase determinatian be used for both organic and metal-
organic compounds. It should be noted, that tlsesha the direct methods is the assumption that al
atoms in the structure are identical and have themtical oscillations around the equilibrium
positions. If this assumption is too drastic, thethod might fail. The other limitation is the
normalization, which requires the knowledge of ttempound composition in the investigated
crystal. Introducing errors at this stage mighkenghe solution of the phase problem difficult or
even impossible. The incorrect symmetry might eaaseraging of the structure factors not related
by the true symmetry, and this can also make tietsire solution impossible.

The normalized structure factorggghave the same properties as structure factgrs Fheir
inverse transformation leads to the maps of thetrele density distribution. In the practice ofedit
methods, the starting reflections are selected laitlpe values, say E(h) > 2.5, and satisfying3he
relationships, the initial phasegh) for these reflections are assigned, then phatesflections
involved inZ, are estimated using the arbitrary probability timi 99%. Based on the obtained
phases, the electron density maps are calculated Hs

1 . .
Pz = > |Enkil expiing exp-2t(hx+ky+lz)

hkl
After locating atoms on thg,.y, maps, new phases and better maps are calculategbleting the
structure.

Pxyz = \i > |Flexp Zia exp -Zi(hx+ky+Iz)

hkl
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Considering the type of the structure factors useslpbtain different functions describing the
electron density distribution. In all cases, plsagsare calculated based on the coordinates of the
localized atoms (direct methods, Patterson).

Function pcaic describing the calculated distribution of the &fee density reflects the current
model of the real crystal structure. It is caltedaas the inverse Fourier transformation of the
calculated structure factorg fx being the sum of the atomic contributions forkhewn atoms:

Fenk = 2f [cos2t (hx+ky+z) + isinZ (hx+ky+Iz)] = A +iB
Pcalc = V-lz I:c,hkl exp -2ti(hX+ky+|Z)

hkl

Structure factor fn (Fnk Observed) is calculated using the experiment@l| |&nd phasep.
calculated from the currently known partial struetu

Fo = |Flexpg.  where ¢c = tg* [Zf sin2t (hx+ky+lz) / Zf cos2t (hx+ky+|z)]

The observed electron densiiys is the inverse Fourier transform of. Flt is the map of the
experimental distribution of the electron densiiich originated the diffraction pattern.

pobs= V'S Fo exp -zi(hx+ky+lz)

hkl

Important and very useful is the transform from thigerence & and F, corresponding to the
differencepops pcaic = Ap in the density distribution functions. That idled the difference map.
The difference of structure factors is calculated a

Fo-Fc = |Flexp ¢c - 2fi exp 2ri(hx; + ky; + 1z))
Ap(xyz) = Vlz (Fo-Fc) exp -Zi(hx+ky+1z) = pops (XyZ) —pcaic (Xyz)

hkl

The difference function is used for completing #teicture and correcting the errors. Value
Ap(xyz) < 0 indicates thgions < pcale. HENce in the xyz point of the model, the elatwensitypcac
has too high value relative to the real densitye-datom too heavy or in the false position.Agf
(xyz) > 0 thenpeps > peale, there is a missing atom at the xyz point of tredet or the current atom
has too small atomic number. Interpretation ofdifterence electron density maps allows to find
the missing atoms, change of the incorrect atone,typcate hydrogen atoms or correct the
molecular conformation

2R I-1FI

To estimate the solution quality, the discrepamciek is used R S|F |

At initial stages of the model building, R~30%. NMefined small molecular structure have
R~2-6%, while for well determined protein structife should be 10-20%
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15. Basic crystallochemistry. Basic types of &inees.

The crystal lattice is formed due to interactiomtween its components. In crystals, one or
several different interactions occur — we refethtem as homodesmic and heterodesmic structures.
Structures can be single-component (elements) dtiammponent (compounds). Interactions
between components in the crystal lattice affeet ghysical and chemical properties of crystals.
lonic interactions are strong and directionlessis§ang the Coulomb law, and crystals revealing
such interactions should dissolve in the polareals. The covalent interactions are directiondl an
strong, and crystals having such interactions atally stable. The metallic interactions can be
either strong or weak, but are directionless. ldgdn bonds are weak and directional. The van der
Waals forces are weak, occur in many structures,cegstals of gases, but they are the only
interactions in crystals of noble gases. Dependingtheir composition, crystals can also be
classified as types A (elements) and crystals ofpmunds of stoichiometry AB, ABand so on.

Basic types of structures can be derived from &ires composed of atoms of the same
element. In the most compact two-dimensional atyistttice, every atom will be tangent to six
identical atomsKig. 15.]). Identity of interactions between atoms resirtshe formation of the
two-dimensionatlose packed structure Such layer has the hexagonal 6mm symmetry. eTaey
free spaces between atoms, caliei@drstices, in which identical atoms of the next layer can be
positioned. Interstices are located between thteens and reveal the 3m symmetry. Size and
distances between the interstices in the firstrlaye such, that only three out of six can bedille
with the next layer atoms. So the next layer ayeament can be in one set of interstices of thé firs
layer. The third layer can be oriented on therstiees of the second layer. The layer orientation
can be coded with A for the first and B for the@®t one. The third might be arranged in either A
or new C position. Thus periodic crystal can barsged into ABAB or ABCABC patterns. Energy
of interactions between such hexagonal layersastidal for both arrangements, since interstices in
each layer are identical. Therefore the possjhisiises for irregularities in the orientation aférs,
eg. ..ABABCABAB.. with no loss in the interactiomergy in the structure. Such phenomenon is
known as modulation and is relatively frequent.

/"_\
A :
S ON@e
) o
T e : :

Fig. 15.1 Fig. 15.2 Fig. 15.3

Three-dimensional close packed structures are lbpiltwith the hexagonal layers arranged
ABAB.. or ABCABC.. (Fig. 15.2 and Fig. 15.3 and reveal the hexagonal or cubic symmetry,
respectively. Crystals of metals or noble gase® Isaich structure. In both kinds of structures, th
tetrahedral and octahedral interstices occur, Hmenrefers to the symmetry of their environment
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(Fig. 15.4andFig. 15.5. Many crystal structures are composed of theaperal close packed
layers formed by one component and atoms of ther @mponent occupying the interstices in the
first sub-lattice.

Fig. 15.5

First type of the close packed structure is thepeofype structure. In crystal, the metallic
interactions occur. The structure is cubic F, wille layer arrangement ABCFi§. 15.9.
Coordinates of Cu atoms are as in the F cell, gaees group is Fm3m. The three-fold axes are
perpendicular to the hexagonal layers and correspoihe cell space diagonals. The coordination
number for Cu atoms is 12 (4+4+4) and the coor@ingtolyhedron is a cubic cubooctahedron. The
strongest inter-atomic interactions occur alongfdee diagonal ([110] and equivalent). Hence for

the cell parameter,a 3.615 A the length of the metallic Cu-Cu bondlig.cu = &-/2/2 and the
copper metallic radius isf= a-/2 /4. This type of the structure is found for Ag,,Ale, Ar.

Thedegree of the space fillingcan be defined as the quotient of the volume ahatin the cell
and the unit cell volume. Simple calculation (&it2) gives \4/ Ve =11./2 /6 = 74%

]

Fig. 15.6. Fig. 15.7.

Next type of the close packed structure is the resigimn type with the layer arrangement
ABAB (Fig. 15.7 and the hexagonal P cell. The coordination nunitreall atoms is 12 (3+6+3)
and the polyhedron is the hexagonal cubooctahedidre shortest distance between Mg atoms is
along the cell edge,athe calculated length of the metallic Mg-Mg baadivug.mg = & and the Mg
metallic radius isyg = a&/2. Since this is also a close packed structdme,degree of the space
filling is identical as for Cu — 74%. Such typesbfucture is found for H, He, Be, Co, Zn.

The tungsten type structurd-ig. 15.8 is not a close packed structure. The inter-atom

interactions are metallic. The coordination numioereach atom is 8, and the atom distribution is
that of the cubic | cell. For the cell parametgra.165 A, the W-W bond length can be calculated
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as Gv.w = &-/3/2 and the metallic radiusyr= a-/3/4. The degree of the space filling (I lattice)

gives Vi / Veen = 1./3/8 = 68%. The tungsten type structure has moreesfim inserting another
components modifying the properties, than the CMgrtypes. This type structure is found for Na,
K, Mo, a-Cr, a-Fe.

Lets compare Cu and W metallic radii calculatedanfithe cell parameters and the literature data
on their van der Waals radii. For Cu these vahres1.278 and 1.280 A, and for W they are 1.370
and 1.410 A. Calculated ratiogyr,gw = 0.998 and w/r.gw = 0.972 indicate the significant
differences in the inter-atomic interactions. Eu copper structure, shortening of the bond redati
to the weak van der Waals interaction is very smatlicating only insignificant interference of
atom cores with the electron gas. For tungstes stiortening is more pronounced, the interference
and consequently the electric resistance is mughehithan that of Cu. The careful analysis of the
structural data can reveal reasons for differemcele physical or chemical properties. This is an
important tool for chemistry, physics or the maiksciences.

Other structures of elements are structures of amnfigs. 15.9-15.1pand graphite Kig.
15.11). The diamond structure can be described as pasition of two F lattices shifted relative to
each other by ¥ of the cell space diagonal. Dbigtion of atoms in the first sub-lattice is thattloé
cubic F lattice, while atoms of the second subdatfill the tetrahedral interstices in the firstbs
lattice. Consequently, the coordination number dach C atom is 4, and the polyhedron is a
tetrahedron. The structure is homodesmic, formethé covalent bonds. Thus the hybridization of

carbon atoms is 8p The C-C bond length iss@¢ = a-/3/4 and can be a standard for a single C-C

bond. The covalent radius of C is¥ a-/3/8. The whole structure reveals the cubic F symynet
The systematic absences should be calculated ayahat can easily be generalized. The two-atom
scattering factor is defined for atom at 000 paindl that shifted by % of the space diagonal, which
then is used in a calculation for the F lattice:

fc.c = fc exp2t(h0+k0+10) + fc exp2u(h¥a +k¥a +1v4)
Fru = fe-c [exp2ri(hx+ky+1z) + expai(h(Y2+x)+k(Y2+y)+lz) +
+ exp2i(h(*2+x)+ky+l(Y2+2)) + expi(hx+k(¥2+y)+l(Y2+2))]

The degree of the space filling can be calculatefipparently, the diamond structure is
composed of two close packed cubic structures tfleéa). Number of atoms in the unit cell Z =

4+4. However, calculation gives onlyV Ve = 11./3/16 = 34%.

The graphite structure is heterodesmic, with theatamt interactions in the grapheme layers and
van der Waals interactions between the layers. cbDoedination number for each atom in the layer
is 3, what corresponds to the hybridizatiodi apd results in the aromatic properties of therlaye
Distance C-C is approximately 1.42 A. The intgreladistance is approximately 3.4 A, what
corresponds to the sum of van der Waals radii.fe@hce in the interactions inside and inter the
layers affects the physical properties. Delocalwatind transport of electrons along layers causes
the excellent electric and heat conductivity. Sachductivity in the direction perpendicular to the
layers is much smaller. Therefore the graphiteneld@s can be either the electric conductors
(graphite electrodes) and insulators (electric laat). Also, the low energy required for the sbift
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one layer against others causes that graphitee as a solid lubricant or in pencils. Analyzihg t
graphite structure, the attention should be paithégpolymorphism. That means occurrence of in
different crystal forms, with different internalchitecture, different unit cell and symmetry foeth
same substance. The hexagonal graphite has arcalemientation of the 1-st, 3-rd, 5-th layerslan
so on (AB type arrangement). The ABC arrangemétayers results in the rhombohedral cell of
the trigonal system.

W
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Fig. 15.10 Fig. 15.11

Consider the chemical compounds. One of the lsRicture types is that of sodium chloride
NACI. It is a homodesmic AB structure with the iomteractions Fig. 15.19 built up with two
cubic F sub-lattices formed by ions of the samegiashifted relative to each other by % of the uni
vector. The cubic F structure can be describeth@segular F sub-lattice formed by Cl anions, in
which the octahedral interstices are filled with"Nens. The coordination number for both Cl and
Na is 6, and coordination polyhedron is the culb@e radii of both components can be calculated.
Sum of 4 ionic Clradii equals the cell face diagonal, while sumCbfand Na radii is #2. The

system of two equation gives = a-+/2/4 and k. = &/2 - fc = &/2 (1 - -/2/2). For this type of
structure, the geometreondition for stability can be derived as the ratio of the atom radii:

N ra=a/2 [(1--/2/2)]/[/2/2)=-/2 -1=0.41
Other compounds crystallizing in the NaCl type stuee: KCI, CaO, AgCl, LiF, FeO, MgO

Systematic absences can be derived from the ditatrattering factor, used subsequently in
the F lattice calculation:

fraci = for exp2i(h0+k0+I0) + fia exp2ri(h/2 +k0 +10) = & + fua exprih

Having the ionic radii, one can calculate the degrethe space filling aspd + Ve / Veen,
accounting for 4 ions of each kind present in thié c

Other type of the structure is the cesium chlotyge Fig. 15.13. Structure is cubic P and can
be described as the P sub-lattice formed by anamuks another P sub-lattice formed by cations,
shifted relative to each other by % of the cellcgpdiagonal. For each component the coordination
number is 8 and the coordination polyhedron isdhiee. The structure is homodesmic with the

ionic interactions. The bond distance is calcd&s @s.cj=rc + rcs = 39@/2. :The ionic radii
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ro= &/2 and &s= &+/3/2 - 1 = &/2(+/3-1)
The geometric condition for stability for the Cd§jbe structure can be derived as:
N /ra=[a/2 (+/3-1)] / [a/2] =~/3-1=0.73

Such type of structure is fund for: Wel, CsBr, TICI, LiAg, LiGa, CuZn

Fig. 15.12 Fig. 15.13.

Another types are the sphalerite type — the cutmmfof ZnS Fig. 15.19 and wurtzite — the
hexagonal formKig. 15.15. Thus, crystals of ZnS reveal the polymorphisemtioned previously

z a ,
K
/:“r:: 717_“—:1_ p | / ;
SN L5 o s
i Os
X @z X
Fig. 15.14 Fig. 15.15. Fig. 15.16.

Both structures are homodesmic. The sphaleritetsire is a two-component analogue of the
diamond, with the cubic F cell. Tetrahedral intees of $ sub-lattice are filled with the Zh
cations. For both ions, the coordination numbe# iand the corresponding polyhedron is the

tetrahedron. The bond length is.d= a-/3 /4, while the ionic radi:
rs=a~2/4irn=a/3/4-k=ald (/3-1/2)
Hence, the geometric condition for stability fohaferite is :

M Ita= [20-/314)] | [20~/214] = (:/3-~/2)/-/2 =0.225

The wurtzite structure can be treated as the an#dasito the Mg structure. It is formed by two
P lattices shifted by u = 1/8 ¢sub-lattices Mg). The hexagonal layers are fatimg Zn or S. The

74

Projekt wspétfinansowany przez Writuropejsk w ramach Europejskiego Funduszu Spotecznego



NARODOWA STRATEGIA SPOINOSCI

UNIA EUROPEJSKA
EUROPEJSKI
KAPITAL LUDZKI FUNDUSZ SPOLECZNY

Projekt pn. Wzmocnienie potencjatu dydaktycznéfddK w Toruniu w dziedzinach matematyczno-przyrodniézyc
realizowany w ramach Poddziatania 4.1.1 Programer@yjnego Kapitat Ludzki

surrounding and the coordination number are idahtio those in the sphalerite. The Zn-S
interaction is along the Z axis, while the S-Slmg the cell gedge.

Lets analyze one structure of the A§pe — the fluorite CaFstructure Fig. 15.16, since it
gives few additional aspects to the structure amalyFirst, the way of the component identificatio
One component forms the cubic F sub-lattice, soutiie cell contains 4 such atoms. The second
component fills all tetrahedral interstices of finst sub-lattice, thus the cell contains 8 atorhthat
type. The fluorite stoichiometry unequivocally icates that the first sub-lattice is formed by Ca
while the second with 'F Surrounding of each type ion is different. Fo&" cations, the
coordination number is 8 with the cube as the doatthn polyhedron. For anions, the coordination
number 4 corresponds to the coordination tetralmedite Ca-F bond distance can be calculated as

dear= lca+ Ir = &+/3 /4, while the ionic radii:

F=a-/2/4 a=a/3/4—¢=a/4(/3-/2)

Notice another conclusion derived from the struewomparison. Comparison of the geometric
condition for stability with the coordination numbadicates, that the larger difference between the
component radii occurs, the smaller coordinatiomber and different coordination polyhedron are
found Fig. 15.19. This dependence enables to certain degreetimpate the matter distribution,
at least in the simple structures.

Liczba  [Schemat uktadu Figura Liczba | Schemat ukkadu Figura
foordynacyjna atoméw koordynacyjna  [koordynacyjna atomow koordynacyjna
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Concluding, the above analysis of the basic strectypes illustrates only few conclusions that
can be derived from the structural data. In pcactifor each investigated structure, the most
important geometrical features have to be definetldiscussed in context of chemical or physical
properties. Author hopes, that this course of tatiechemistry helped the participants in
preparation for such task.
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